59,456 research outputs found

    Generic Secure Repair for Distributed Storage

    Get PDF
    This paper studies the problem of repairing secret sharing schemes, i.e., schemes that encode a message into nn shares, assigned to nn nodes, so that any nrn-r nodes can decode the message but any colluding zz nodes cannot infer any information about the message. In the event of node failures so that shares held by the failed nodes are lost, the system needs to be repaired by reconstructing and reassigning the lost shares to the failed (or replacement) nodes. This can be achieved trivially by a trustworthy third-party that receives the shares of the available nodes, recompute and reassign the lost shares. The interesting question, studied in the paper, is how to repair without a trustworthy third-party. The main issue that arises is repair security: how to maintain the requirement that any colluding zz nodes, including the failed nodes, cannot learn any information about the message, during and after the repair process? We solve this secure repair problem from the perspective of secure multi-party computation. Specifically, we design generic repair schemes that can securely repair any (scalar or vector) linear secret sharing schemes. We prove a lower bound on the repair bandwidth of secure repair schemes and show that the proposed secure repair schemes achieve the optimal repair bandwidth up to a small constant factor when nn dominates zz, or when the secret sharing scheme being repaired has optimal rate. We adopt a formal information-theoretic approach in our analysis and bounds. A main idea in our schemes is to allow a more flexible repair model than the straightforward one-round repair model implicitly assumed by existing secure regenerating codes. Particularly, the proposed secure repair schemes are simple and efficient two-round protocols

    Optimal Query Complexity for Reconstructing Hypergraphs

    Get PDF
    In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let GG be a weighted hidden hypergraph of constant rank with n vertices and mm hyperedges. For any mm there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlognlogm) O(\frac{m\log n}{\log m}) additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008]. When the weights of the hypergraph are integers that are less than O(poly(nd/m))O(poly(n^d/m)) where dd is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlogndmlogm). O(\frac{m\log \frac{n^d}{m}}{\log m}). additive queries. Using the information theoretic bound the above query complexities are tight

    Criminal law as a security project

    Get PDF
    This paper asks how criminal might be understood as a security project. Following Valverde’s lead, it does this not by trying to define the concept of security, but by looking at the operation of the temporal and spatial logics of the criminal law. It looks first at the basic logics of time and space in conceptions of criminal liability and jurisdiction, before reviewing some recent developments which challenge these practices and what these might mean for criminal law as a security project

    A spin glass model for reconstructing nonlinearly encrypted signals corrupted by noise

    Get PDF
    An encryption of a signal sRN{\bf s}\in\mathbb{R^N} is a random mapping sy=(y1,,yM)TRM{\bf s}\mapsto \textbf{y}=(y_1,\ldots,y_M)^T\in \mathbb{R}^M which can be corrupted by an additive noise. Given the Encryption Redundancy Parameter (ERP) μ=M/N1\mu=M/N\ge 1, the signal strength parameter R=isi2/NR=\sqrt{\sum_i s_i^2/N}, and the ('bare') noise-to-signal ratio (NSR) γ0\gamma\ge 0, we consider the problem of reconstructing s{\bf s} from its corrupted image by a Least Square Scheme for a certain class of random Gaussian mappings. The problem is equivalent to finding the configuration of minimal energy in a certain version of spherical spin glass model, with squared Gaussian-distributed random potential. We use the Parisi replica symmetry breaking scheme to evaluate the mean overlap p[0,1]p_{\infty}\in [0,1] between the original signal and its recovered image (known as 'estimator') as NN\to \infty, which is a measure of the quality of the signal reconstruction. We explicitly analyze the general case of linear-quadratic family of random mappings and discuss the full p(γ)p_{\infty} (\gamma) curve. When nonlinearity exceeds a certain threshold but redundancy is not yet too big, the replica symmetric solution is necessarily broken in some interval of NSR. We show that encryptions with a nonvanishing linear component permit reconstructions with p>0p_{\infty}>0 for any μ>1\mu>1 and any γ<\gamma<\infty, with pγ1/2p_{\infty}\sim \gamma^{-1/2} as γ\gamma\to \infty. In contrast, for the case of purely quadratic nonlinearity, for any ERP μ>1\mu>1 there exists a threshold NSR value γc(μ)\gamma_c(\mu) such that p=0p_{\infty}=0 for γ>γc(μ)\gamma>\gamma_c(\mu) making the reconstruction impossible. The behaviour close to the threshold is given by p(γcγ)3/4p_{\infty}\sim (\gamma_c-\gamma)^{3/4} and is controlled by the replica symmetry breaking mechanism.Comment: 33 pages, 5 figure
    corecore