36 research outputs found

    Low-Cost Multiple-MAV SLAM Using Open Source Software

    Get PDF
    We demonstrate a multiple micro aerial vehicle (MAV) system capable of supporting autonomous exploration and navigation in unknown environments using only a sensor commonly found in low-cost, commercially available MAVs鈥攁 front-facing monocular camera. We adapt a popular open source monocular SLAM library, ORB-SLAM, to support multiple inputs and present a system capable of effective cross-map alignment that can be theoretically generalized for use with other monocular SLAM libraries. Using our system, a single central ground control station is capable of supporting up to five MAVs simultaneously without a loss in mapping quality as compared to single-MAV ORB-SLAM. We conduct testing using both benchmark datasets and real-world trials to demonstrate the capability and real-time effectiveness

    3D Scene Reconstruction with Micro-Aerial Vehicles and Mobile Devices

    Full text link
    Scene reconstruction is the process of building an accurate geometric model of one\u27s environment from sensor data. We explore the problem of real-time, large-scale 3D scene reconstruction in indoor environments using small laser range-finders and low-cost RGB-D (color plus depth) cameras. We focus on computationally-constrained platforms such as micro-aerial vehicles (MAVs) and mobile devices. These platforms present a set of fundamental challenges - estimating the state and trajectory of the device as it moves within its environment and utilizing lightweight, dynamic data structures to hold the representation of the reconstructed scene. The system needs to be computationally and memory-efficient, so that it can run in real time, onboard the platform. In this work, we present three scene reconstruction systems. The first system uses a laser range-finder and operates onboard a quadrotor MAV. We address the issues of autonomous control, state estimation, path-planning, and teleoperation. We propose the multi-volume occupancy grid (MVOG) - a novel data structure for building 3D maps from laser data, which provides a compact, probabilistic scene representation. The second system uses an RGB-D camera to recover the 6-DoF trajectory of the platform by aligning sparse features observed in the current RGB-D image against a model of previously seen features. We discuss our work on camera calibration and the depth measurement model. We apply the system onboard an MAV to produce occupancy-based 3D maps, which we utilize for path-planning. Finally, we present our contributions to a scene reconstruction system for mobile devices with built-in depth sensing and motion-tracking capabilities. We demonstrate reconstructing and rendering a global mesh on the fly, using only the mobile device\u27s CPU, in very large (300 square meter) scenes, at a resolutions of 2-3cm. To achieve this, we divide the scene into spatial volumes indexed by a hash map. Each volume contains the truncated signed distance function for that area of space, as well as the mesh segment derived from the distance function. This approach allows us to focus computational and memory resources only in areas of the scene which are currently observed, as well as leverage parallelization techniques for multi-core processing

    Visual Perception System for Aerial Manipulation: Methods and Implementations

    Get PDF
    La tecnolog铆a se evoluciona a gran velocidad y los sistemas aut贸nomos est谩n empezado a ser una realidad. Las compa帽铆as est谩n demandando, cada vez m谩s, soluciones robotizadas para mejorar la eficiencia de sus operaciones. Este tambi茅n es el caso de los robots a茅reos. Su capacidad 煤nica de moverse libremente por el aire los hace excelentes para muchas tareas que son tediosas o incluso peligrosas para operadores humanos. Hoy en d铆a, la gran cantidad de sensores y drones comerciales los hace soluciones muy tentadoras. Sin embargo, todav铆a se requieren grandes esfuerzos de obra humana para customizarlos para cada tarea debido a la gran cantidad de posibles entornos, robots y misiones. Los investigadores dise帽an diferentes algoritmos de visi贸n, hardware y sensores para afrontar las diferentes tareas. Actualmente, el campo de la rob贸tica manipuladora a茅rea est谩 emergiendo con el objetivo de extender la cantidad de aplicaciones que estos pueden realizar. Estas pueden ser entre otras, inspecci贸n, mantenimiento o incluso operar v谩lvulas u otras m谩quinas. Esta tesis presenta un sistema de manipulaci贸n a茅rea y un conjunto de algoritmos de percepci贸n para la automatizaci贸n de las tareas de manipulaci贸n a茅rea. El dise帽o completo del sistema es presentado y una serie de frameworks son presentados para facilitar el desarrollo de este tipo de operaciones. En primer lugar, la investigaci贸n relacionada con el an谩lisis de objetos para manipulaci贸n y planificaci贸n de agarre considerando diferentes modelos de objetos es presentado. Dependiendo de estos modelos de objeto, se muestran diferentes algoritmos actuales de an谩lisis de agarre y algoritmos de planificaci贸n para manipuladores simples y manipuladores duales. En Segundo lugar, el desarrollo de algoritmos de percepci贸n para detecci贸n de objetos y estimaci贸n de su posicione es presentado. Estos permiten al sistema identificar objetos de cualquier tipo en cualquier escena para localizarlos para efectuar las tareas de manipulaci贸n. Estos algoritmos calculan la informaci贸n necesaria para los an谩lisis de manipulaci贸n descritos anteriormente. En tercer lugar. Se presentan algoritmos de visi贸n para localizar el robot en el entorno al mismo tiempo que se elabora un mapa local, el cual es beneficioso para las tareas de manipulaci贸n. Estos mapas se enriquecen con informaci贸n sem谩ntica obtenida en los algoritmos de detecci贸n. Por 煤ltimo, se presenta el desarrollo del hardware relacionado con la plataforma a茅rea, el cual incluye unos manipuladores de bajo peso y la invenci贸n de una herramienta para realizar tareas de contacto con superficies r铆gidas que sirve de estimador de la posici贸n del robot. Todas las t茅cnicas presentadas en esta tesis han sido validadas con extensiva experimentaci贸n en plataformas reales.Technology is growing fast, and autonomous systems are becoming a reality. Companies are increasingly demanding robotized solutions to improve the efficiency of their operations. It is also the case for aerial robots. Their unique capability of moving freely in the space makes them suitable for many tasks that are tedious and even dangerous for human operators. Nowadays, the vast amount of sensors and commercial drones makes them highly appealing. However, it is still required a strong manual effort to customize the existing solutions to each particular task due to the number of possible environments, robot designs and missions. Different vision algorithms, hardware devices and sensor setups are usually designed by researchers to tackle specific tasks. Currently, aerial manipulation is being intensively studied to allow aerial robots to extend the number of applications. These could be inspection, maintenance, or even operating valves or other machines. This thesis presents an aerial manipulation system and a set of perception algorithms for the automation aerial manipulation tasks. The complete design of the system is presented and modular frameworks are shown to facilitate the development of these kind of operations. At first, the research about object analysis for manipulation and grasp planning considering different object models is presented. Depend on the model of the objects, different state of art grasping analysis are reviewed and planning algorithms for both single and dual manipulators are shown. Secondly, the development of perception algorithms for object detection and pose estimation are presented. They allows the system to identify many kind of objects in any scene and locate them to perform manipulation tasks. These algorithms produce the necessary information for the manipulation analysis described in the previous paragraph. Thirdly, it is presented how to use vision to localize the robot in the environment. At the same time, local maps are created which can be beneficial for the manipulation tasks. These maps are are enhanced with semantic information from the perception algorithm mentioned above. At last, the thesis presents the development of the hardware of the aerial platform which includes the lightweight manipulators and the invention of a novel tool that allows the aerial robot to operate in contact with static objects. All the techniques presented in this thesis have been validated throughout extensive experimentation with real aerial robotic platforms
    corecore