496 research outputs found

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    A Semi-Lagrangian Scheme with Radial Basis Approximation for Surface Reconstruction

    Full text link
    We propose a Semi-Lagrangian scheme coupled with Radial Basis Function interpolation for approximating a curvature-related level set model, which has been proposed by Zhao et al. in \cite{ZOMK} to reconstruct unknown surfaces from sparse, possibly noisy data sets. The main advantages of the proposed scheme are the possibility to solve the level set method on unstructured grids, as well as to concentrate the reconstruction points in the neighbourhood of the data set, with a consequent reduction of the computational effort. Moreover, the scheme is explicit. Numerical tests show the accuracy and robustness of our approach to reconstruct curves and surfaces from relatively sparse data sets.Comment: 14 pages, 26 figure

    Fast Algorithms for Surface Reconstruction from Point Cloud

    Full text link
    We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency

    Multiple 2D self organising map network for surface reconstruction of 3D unstructured data

    Get PDF
    Surface reconstruction is a challenging task in reverse engineering because it must represent the surface which is similar to the original object based on the data obtained. The data obtained are mostly in unstructured type whereby there is not enough information and incorrect surface will be obtained. Therefore, the data should be reorganised by finding the correct topology with minimum surface error. Previous studies showed that Self Organising Map (SOM) model, the conventional surface approximation approach with Non Uniform Rational B-Splines (NURBS) surfaces, and optimisation methods such as Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimisation (PSO) methods are widely implemented in solving the surface reconstruction. However, the model, approach and optimisation methods are still suffer from the unstructured data and accuracy problems. Therefore, the aims of this research are to propose Cube SOM (CSOM) model with multiple 2D SOM network in organising the unstructured surface data, and to propose optimised surface approximation approach in generating the NURBS surfaces. GA, DE and PSO methods are implemented to minimise the surface error by adjusting the NURBS control points. In order to test and validate the proposed model and approach, four primitive objects data and one medical image data are used. As to evaluate the performance of the proposed model and approach, three performance measurements have been used: Average Quantisation Error (AQE) and Number Of Vertices (NOV) for the CSOM model while surface error for the proposed optimised surface approximation approach. The accuracy of AQE for CSOM model has been improved to 64% and 66% when compared to 2D and 3D SOM respectively. The NOV for CSOM model has been reduced from 8000 to 2168 as compared to 3D SOM. The accuracy of surface error for the optimised surface approximation approach has been improved to 7% compared to the conventional approach. The proposed CSOM model and optimised surface approximation approach have successfully reconstructed surface of all five data with better performance based on three performance measurements used in the evaluation
    • …
    corecore