283 research outputs found

    Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Morrow, R., Fu, L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., & Zaron, E. D. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Frontiers in Marine Science, 6(232),(2019), doi:10.3389/fmars.2019.00232.The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6∘ latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15–30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at scales that are important in the generation and dissipation of kinetic energy in the ocean, and that facilitate the exchange of energy between the ocean interior and the upper layer. The active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles. This review paper highlights the issues being addressed by the SWOT science community to understand SWOT’s very precise sea surface height (SSH)/surface pressure observations, and it explores how SWOT data will be combined with other satellite and in situ data and models to better understand the upper ocean 4D circulation (x, y, z, t) over the next decade. SWOT will provide unprecedented 2D ocean SSH observations down to 15–30 km in wavelength, which encompasses the scales of “balanced” geostrophic eddy motions, high-frequency internal tides and internal waves. This presents both a challenge in reconstructing the 4D upper ocean circulation, or in the assimilation of SSH in models, but also an opportunity to have global observations of the 2D structure of these phenomena, and to learn more about their interactions. At these small scales, ocean dynamics evolve rapidly, and combining SWOT 2D SSH data with other satellite or in situ data with different space-time coverage is also a challenge. SWOT’s new technology will be a forerunner for the future altimetric observing system, and so advancing on these issues today will pave the way for our future.The authors were mostly funded through the NASA Physical Oceanography Program and the CNES/TOSCA programs for the SWOT and OSTST Science teams. AnP acknowledges support from the Spanish Research Agency and the European Regional Development Fund (Award No. CTM2016-78607-P). AuP acknowledges support from the ANR EQUINOx (ANR-17-CE01-0006-01)

    A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx).

    Get PDF
    © The Authors, 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre, B., Poulain, P. M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T., Mahadevan, A., & Tintore, J. A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx). Frontiers in Marine Science, 4(39), (2017), doi:10.3389/fmars.2017.00039.The challenges associated with meso- and submesoscale variability (between 1 and 100 km) require high-resolution observations and integrated approaches. Here we describe a major oceanographic experiment designed to capture the intense but transient vertical motions in an area characterized by strong fronts. Finescale processes were studied in the eastern Alboran Sea (Western Mediterranean) about 400 km east of the Strait of Gibraltar, a relatively sparsely sampled area. In-situ systems were coordinated with satellite data and numerical simulations to provide a full description of the physical and biogeochemical variability. Hydrographic data confirmed the presence of an intense salinity front formed by the confluence of Atlantic Waters, entering from Gibraltar, with the local Mediterranean waters. The drifters coherently followed the northeastern limb of an anticyclonic gyre. Near real time data from acoustic current meter data profiler showed consistent patterns with currents of up to 1 m/s in the southern part of the sampled domain. High-resolution glider data revealed submesoscale structures with tongues of chlorophyll-a and oxygen associated with the frontal zone. Numerical results show large vertical excursions of tracers that could explain the subducted tongues and filaments captured by ocean gliders. A unique aspect of AlborEx is the combination of high-resolution synoptic measurements of vessel-based measurements, autonomous sampling, remote sensing and modeling, enabling the evaluation of the underlying mechanisms responsible for the observed distributions and biogeochemical patchiness. The main findings point to the importance of fine-scale processes enhancing the vertical exchanges between the upper ocean and the ocean interior.The AlborEx experiment was conducted in the framework of PERSEUS EU-funded project (Grant agreement no: 287600). The experiment was led by the Spanish National Research Council (CSIC) institution with strong involvement and cooperation from other national and international partners: Balearic Islands Coastal Observing and Forecasting System (SOCIB, Spain); Consiglio Nazionale delle Ricerche (CNR, Italy), McGill University (Canada); Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italy) and Woods Hole Oceanographic Institution (WHOI, USA). Glider operations were partially funded by JERICO FP7 project. AP acknowledges support from the Spanish National Research Program (E-MOTION/CTM2012-31014 and PRE-SWOT/CTM2016-78607-P). SR and AP are also supported by the Copernicus Marine Environment Monitoring Service (CMEMS) MedSUB project. EM is supported by a post-doctoral grant from the Conselleria d'Educació, Cultura i Universitats del Govern de les Illes Balears (Mallorca, Spain) and the European Social Fund. AC is a FNRS researcher under the FNRS BENTHOX project (Convention T.1009.15). The altimeter products were produced by Ssalto/Duacs and distributed by CMEMS. The profiling floats and some drifters were contributed by the Argo-Italy program. The authors are in debt with A. Massanet, F. Margirier, M. Palmer, C. Castilla, P. Balaguer and for their efficient work and implication during the AlborEx cruise. We also thank M. Menna, G. Notarstefano and A. Bussani for their help with the drifter and float data processing and the production of some figures. This article was initiated during a research visit of the first two authors to Woods Hole Oceanographic Institution

    Ocean surface currents reconstruction from microwave radiometers measurements

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit d'Enginyeria de les TICOcean currents are a key component to understanding many oceanic and climatic phenomena and knowledge of them is crucial for both navigation and operational applications. Therefore, a key problem in oceanography is the estimation of the synoptic velocity field. Currently, global ocean surface velocities are routinely estimated from Sea Surface Height (SSH) measurements provided by altimeters. However, the separation between passes, as well as and the limited number of available altimeters leads to errors in the accurate location of oceanic currents when these measurements are used exclusively. Contrarily, satellite images of Sea Surface Temperature (SST) provide a good qualitative view of the location of ocean patterns, which has encouraged the investigation of alternative methodologies to reconstruct the velocity field based on these observations. This Ph.D. thesis has assessed the capability of SST microwave radiometers observations to retrieve ocean surface currents. The reconstruction of the ocean surface currents from SST observations can be expressed in terms of a transfer function notation, that allows to convert SST maps into SSH, and thus into currents. Because under geostrophic balance, the slope of SSH is proportional to ocean surface currents. This transfer function can be theoretically derived using the Surface Quasi-Geostrophic equations (SQG). Two different approaches were analyzed at a global scale: on one side, the analysis of the validity of the SQG approach has been performed, and on the other, an approach based on the synergetic properties between simultaneous SST and SSH observations has been analyzed. Both approaches have been compared with ocean surface currents retrieved from merged altimetric observations. The study has been focused on the period from October 2002 to May 2005, since during that period there were available four different altimeters, and the quality of the merged altimetric observations was enhanced. The analysis of the validity of SQG at a global scale revealed that this dynamical model is valid near the major extratropic current system such us the Gulf Stream, the Antartic Circumpolar Current, Kuroshio currents. Besides, the potential of MW SST observations to reconstruct ocean surface currents was analyzed using a synergetic approach: the combination of the SST phase with the SSH spectra. Actually, we explored under which environmental conditions the phase of the MW SST is close to the SSH phase. Results showed that the phase of the MW SST can be used to retrieve ocean currents during winter, near the major extratropical current systems, which are characterized by an intense mesoscale activity and the presence of strong thermal gradients, and deep ML. Furthermore, the reconstruction of the velocity fields from an ideal transfer function built up from simultaneous SST and SSH observations revealed that the SQG approach can be enhanced. The spectral properties of this ideal transfer function derived from simultaneous SST and SSH observations were characterized at a global scale. The analysis of spectral properties of the transfer function between SST and SSH observations revealed that despite daily spectral can be flatter or steeper than the k^{-1} predicted by SQG theory, in mean eSQG is a good statistically approach to retrieve ocean currents, when no simultaneous observations of SSH and SST are available.Las corrientes oceánicas son clave en muchos procesos oceánicos y climáticos, y su conocimiento es crucial para aplicaciones operacionales y de navegación. Por lo tanto, un aspecto importante en oceanografía es la estimación de campos sinópticos del campo de velocidades superficiales del mar. Actualmente, las velocidades superficiales el mar se estiman rutinariamente a partir de medidas del nivel del mar proporcionadas por altimetros, denotadas a partir de ahora con sus siglas en inglés SSH. Sin embargo, la llocalización de las corrientes puede no ser la correcta si solo se utilizan este tipo de medidas para su estimación, debido a la separación entre trazas del satélite. Por contra, las imágenes de temperatura superficial del mar, SST, proporiconan una visión cualitativa de la localización de las estructruas oceánicas. Este hecho ha motivado la investigación de metodologías alternativas para reconstruir los campos de velocidades superficiales del mar basados en estas observaciones. Esta tesis doctoral ha investigado la capacidad de las observaciones de SST proporcionadas por radiometros de microondas para recuperar las corrientes oceánicas superficiales. La reconstrucción de estas velocidades a partir de observaciones de SST se puede expresar en términos de una función de transferencia que relacione las observaciones de SST con las observaciones de SSH. Con lo que la estimación del campo de velocidades es directa, puesto que bajo la condición de equilibrio geostrófico la pendiente de la SSH es proporcional a las corrientes oceánicas. Esta función de transferencia se puede derivar teóricamente mediante las equaciones superficiales cuasi-geotróficas, denotadas con sus siglas en inglés SQG a partir de ahora. Una pregunta clave, es si las ecuaciones de este modelo dinámico son válidas. En esta tesis, se han llevado a cabo dos aproximaciones diferentes para la reconstrucción del campo de velocidades superficiales del mar: por un lado, el análisis de la validez de las ecuaciones SQG, y por otro, una aproximación basada en las propiedades espectrales de medidas simultáneas de SST y SSH. El estudio se ha centrado en el período comprendido entre Octubre del 2002 y Mayo del 2005, puesto que durante este período había disponibles hasta cuatro altmímetros, y consecuentemente la calidad de las observaciones es mayor. El análisis de la validez de SQG a escala global reveló que este modelo dinámico es válido en las regiones cerca de los sistemas de corrientes extratropicales, como la corriente del Golfo, la Corriente Circumpolar Antártica (ACC), o la Kuroshio. Además, el potencial de las observaciones de SST en el rango de las microondas para la recuperación del campo de velocidades superficiales del mar, ha sido analizado utilizando un método que combina la fase de la SST con el espectro de SSH. En realidad, se ha investigado bajo que condiciones la SST y SSH están en fase. Los resultados mostraron que la fase de la SST de microondas puede utilizarse para para la reconstrucción en invierno, cerca de los sistemas de corrientes extratropicales, caracterizados por una intensa actividad de mesoscala y la presencia de fuertes gradientes termales, así como de capas de mezcla profundas. Asimismo, la reconstrucción del campo de velocidades a partir de una función de transferencia ideal, construida a partir de imágenes simultaneas de SST y SSH, reveló que la aproximación SQG puede ser mejorada. Las propiedades espectrales de esta función de tranferencia ideal han sido estudiadas., así como su variabilidad temporal. Este análisis desveló que para escalas pequeñas y zonas enegéticas, la aproximación SQG es una buena aproximación, al menos, desde un punto de vista estádistico.Award-winningPostprint (published version

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission

    Get PDF
    The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6 latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15–30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at scales that are important in the generation and dissipation of kinetic energy in the ocean, and that facilitate the exchange of energy between the ocean interior and the upper layer. The active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles. This review paper highlights the issues being addressed by the SWOT science community to understand SWOT’s very precise sea surface height (SSH)/surface pressure observations, and it explores how SWOT data will be combined with other satellite and in situ data and models to better understand the upper ocean 4D circulation (x, y, z, t) over the next decade. SWOT will provide unprecedented 2D ocean SSH observations down to 15–30 km in wavelength, which encompasses the scales of “balanced” geostrophic eddy motions, high-frequency internal tides and internal waves. Frontiers in Marine Science | www.frontiersin.org 1 May 2019 | Volume 6 | Article 232 Morrow et al. SWOT Fine-Scale Global Ocean Topography This presents both a challenge in reconstructing the 4D upper ocean circulation, or in the assimilation of SSH in models, but also an opportunity to have global observations of the 2D structure of these phenomena, and to learn more about their interactions. At these small scales, ocean dynamics evolve rapidly, and combining SWOT 2D SSH data with other satellite or in situ data with different space-time coverage is also a challenge. SWOT’s new technology will be a forerunner for the future altimetric observing system, and so advancing on these issues today will pave the way for our future

    Spreading of Lagrangian Particles in the Black Sea: A Comparison between Drifters and a High-Resolution Ocean Model

    Get PDF
    The Lagrangian dispersion statistics of the Black Sea are estimated using satellite-tracked drifters, satellite altimeter data and a high-resolution ocean model. Comparison between the in-situ measurements and the model reveals good agreement in terms of the surface dispersion. The mean sub-basin coherent structures and currents of the Black Sea are well reproduced by the model. Seasonal variability of the dispersion in the upper (15 m), intermediate (150 m) and deep (750 m) layers are discussed with a special focus of the role of sub-basin scale structures and currents on the turbulent dispersion regimes. In terms of the surface relative dispersion, the results show the presence of the three known turbulent exponential, Richardson and diffusive-like regimes. The non-local exponential regime is only detected by the model for scales <10 km, while the local Richardson regime occurs between 10 and 100 km in all cases due to the presence of an inverse energy cascade range, and the diffusive-like regime is well detected for the largest distance by drifters (100–300 km) in winter/spring. Regarding the surface absolute dispersion, it reflects the occurrence of both quasi-ballistic and random-walk regimes at small and large times, respectively, while the two anomalous hyperbolic (5/4) and elliptic (5/3) regimes, which are related to the topology of the Black Sea, are detected at intermediate times. At depth, the signatures of the relative and absolute dispersion regimes shown in the surface layer are still valid in most cases. The absolute dispersion is anisotropic; the zonal component grows faster than the meridional component in any scenario

    Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea

    Full text link
    peer reviewedThe identification of mesoscale eddies from remote sensing altimetry is often used as a first step for downstream analyses of surface or subsurface auxiliary data sets, in a so-called composite analysis framework. This framework aims at characterizing the mean perturbations induced by eddies on oceanic variables, by merging the local anomalies of multiple data instances according to their relative position to eddies. Here, we evaluate different altimetry data sets derived for the Black Sea and compare their adequacy to characterize subsurface oxygen and salinity signatures induced by cyclonic and anticyclonic eddies. In particular, we propose that the theoretical consistency and estimated error of the reconstructed mean anomaly may serve to qualify the accuracy of gridded altimetry products and that BGC-Argo data provide a strong asset in that regard. The most recent of these data sets, prepared with a coastal concern in the frame of the ESA EO4SIBS project, provides statistics of eddy properties that, in comparison with earlier products, are closer to model simulations, in particular for coastal anticyclones. More importantly, the subsurface signature of eddies reconstructed from BGC-Argo floats data is more consistent when the EO4SIBS data set is used to relocate the profiles into an eddy-centric coordinate system. Besides, we reveal intense subsurface oxygen anomalies which stress the importance of mesoscale contribution to Black Sea oxygen dynamics and support the hypothesis that this contribution extends beyond transport and involves net biogeochemical processes
    corecore