48 research outputs found

    Fingerprint Orientation Refinement Through Iterative Smoothing

    Get PDF
    We propose a new gradient-based method for the extraction of the orientation field associated to a fingerprint, and a regularisation procedure to improve the orientation field computed from noisy fingerprint images. The regularisation algorithm is based on three new integral operators, introduced and discussed in this paper. A pre-processing technique is also proposed to achieve better performances of the algorithm. The results of a numerical experiment are reported to give an evidence of the efficiency of the proposed algorithm

    PGT-Net: Progressive Guided Multi-task Neural Network for Small-area Wet Fingerprint Denoising and Recognition

    Full text link
    Fingerprint recognition on mobile devices is an important method for identity verification. However, real fingerprints usually contain sweat and moisture which leads to poor recognition performance. In addition, for rolling out slimmer and thinner phones, technology companies reduce the size of recognition sensors by embedding them with the power button. Therefore, the limited size of fingerprint data also increases the difficulty of recognition. Denoising the small-area wet fingerprint images to clean ones becomes crucial to improve recognition performance. In this paper, we propose an end-to-end trainable progressive guided multi-task neural network (PGT-Net). The PGT-Net includes a shared stage and specific multi-task stages, enabling the network to train binary and non-binary fingerprints sequentially. The binary information is regarded as guidance for output enhancement which is enriched with the ridge and valley details. Moreover, a novel residual scaling mechanism is introduced to stabilize the training process. Experiment results on the FW9395 and FT-lightnoised dataset provided by FocalTech shows that PGT-Net has promising performance on the wet-fingerprint denoising and significantly improves the fingerprint recognition rate (FRR). On the FT-lightnoised dataset, the FRR of fingerprint recognition can be declined from 17.75% to 4.47%. On the FW9395 dataset, the FRR of fingerprint recognition can be declined from 9.45% to 1.09%

    Fingerabdruckswachstumvorhersage, Bildvorverarbeitung und Multi-level Judgment Aggregation

    Get PDF
    Im ersten Teil dieser Arbeit wird Fingerwachstum untersucht und eine Methode zur Vorhersage von Wachstum wird vorgestellt. Die Effektivität dieser Methode wird mittels mehrerer Tests validiert. Vorverarbeitung von Fingerabdrucksbildern wird im zweiten Teil behandelt und neue Methoden zur Schätzung des Orientierungsfelds und der Ridge-Frequenz sowie zur Bildverbesserung werden vorgestellt: Die Line Sensor Methode zur Orientierungsfeldschätzung, gebogene Regionen zur Ridge-Frequenz-Schätzung und gebogene Gabor Filter zur Bildverbesserung. Multi-level Jugdment Aggregation wird eingeführt als Design Prinzip zur Kombination mehrerer Methoden auf mehreren Verarbeitungsstufen. Schließlich wird Score Neubewertung vorgestellt, um Informationen aus der Vorverarbeitung mit in die Score Bildung einzubeziehen. Anhand eines Anwendungsbeispiels wird die Wirksamkeit dieses Ansatzes auf den verfügbaren FVC-Datenbanken gezeigt.Finger growth is studied in the first part of the thesis and a method for growth prediction is presented. The effectiveness of the method is validated in several tests. Fingerprint image preprocessing is discussed in the second part and novel methods for orientation field estimation, ridge frequency estimation and image enhancement are proposed: the line sensor method for orientation estimation provides more robustness to noise than state of the art methods. Curved regions are proposed for improving the ridge frequency estimation and curved Gabor filters for image enhancement. The notion of multi-level judgment aggregation is introduced as a design principle for combining different methods at all levels of fingerprint image processing. Lastly, score revaluation is proposed for incorporating information obtained during preprocessing into the score, and thus amending the quality of the similarity measure at the final stage. A sample application combines all proposed methods of the second part and demonstrates the validity of the approach by achieving massive verification performance improvements in comparison to state of the art software on all available databases of the fingerprint verification competitions (FVC)

    A new three-stage scheme for fingerprint enhancement and its impact on fingerprint recognition

    Get PDF
    In order to provide safety and security from fraudulent acts, it is necessary to use a reliable biometric identifier. Fingerprint is considered to be one of most effective biometric identifiers because of its universal characteristics. The recognition rate of identification/verification systems depends to a great extent on the quality of the fingerprint image. In a fingerprint recognition system, there are two main phases: 1) extraction of suitable features of fingerprints, and 2) fingerprint matching using those extracted features to find the correspondence and similarity between the fingerprint images. The low quality of fingerprint images provides false minutiae at the stage of feature extraction and reduces the recognition rate of minutiae-based fingerprint matching systems. Use of enhanced fingerprint images improves the recognition rate but at the expense of a substantially increased complexity. The objective of this research is to develop an efficient and cost-effective scheme for enhancing fingerprint images that can improve minutiae extraction rate as well as effectively improve the recognition rate of a minutiae-based fingerprint matching system. In the first part of this thesis, a novel low-complexity three-stage scheme for the enhancement of fingerprint images is developed. In the first stage of the scheme, a linear diffusion filter driven by an orientation field is designed to enhance the low-quality fingerprint image. The computational complexity is reduced by using a simple gradient-based method for estimating the orientation field and by using a small number of iterations. Although some of the broken ridges in the fingerprint image are partially connected after the first stage, this stage has a limitation of not being able to connect ridges broken with wide creases, and also not being able to recover ridges in the smeared regions. To overcome the shortcomings of the first stage, the fingerprint image obtained after the first-stage enhancement is passed through a compensation filter in the second stage. Although the broken ridges in the enhanced fingerprint image after the second stage are fully connected, the ridges affected by smears are only partially recovered. Hence, the output obtained from the second stage is passed through the third-stage enhancement, which has two phases: short-time Fourier transform (STFT) analysis and enhancement by an angular filter. In the first phase, a Gaussian spectral window is used in order to perform the STFT and this window helps to reduce the blocking effect in the enhanced image. In the second phase, the image obtained from the STFT is passed through an angular filter, which significantly improves the overall quality of the fingerprint image. In the second part of this thesis, the effectiveness and usefulness of the proposed enhancement scheme are examined in fingerprint feature extraction and matching for fingerprint recognition applications. For this purpose, a minutiae extraction algorithm is first applied to extract minutiae from fingerprint images and then a minutia-based matching algorithm is applied to the set of extracted minutiae using a hybrid shape and orientation descriptor in order to find similarity between a pair of fingerprints. Extensive experiments are conducted throughout this thesis using a number of challenging benchmark databases chosen from FVC2000, FVC2002 and FVC2004. Simulation results demonstrate not only the effectiveness of the proposed enhancement scheme in improving the subjective and objective qualities of fingerprint images, but also a superior minutiae extraction rate and a recognition accuracy of the fingerprint images enhanced by the proposed scheme at a reduced computational complexity

    Cancellable biometric using matrix approaches

    Get PDF
    PhD ThesisCancellable biometrics endeavour to hide the appearance of a biometric image into a transformed template which prevents the outsider from recognising whom the biometric belongs to. Current research into cancellable biometric methodologies concentrates on the details of biometric traits. This approach has a drawback which cannot possibly be implemented with other biometric technology. To address this problem, this thesis contributes to development of a novel concept for the feature transformation of biometric technology, especially for fingerprints, by utilizing several matrix operations to provide an alternative algorithm in order to produce multi-implementation of the cancellable system. The matrix operations generate the feature element of the input fingerprint image in an irrevocable form of output fingerprint template by ignoring the type of biometric traits unique to fingerprints; thus, the cancellable algorithm can be implemented in different biometrics technologies. The implementation offers a new concept in generating a cancellable template by considering a sequential procedure for the fingerprint processing, in order to allow the authentication process to succeed in authenticating an enquired input. For example, a region of interest (RoI) step is required to provide a square form input to support the system working in a matrix domain. Meanwhile, the input fingerprints are mostly in rectangular form. This thesis contributes a new approach to selecting a certain area of a fingerprint by utilizing the density of ridge frequency and orientation. The implementation of these two enhancement steps reduces the excision process of this significant region of the fingerprint by avoiding the involvement of a non-feature area. Meanwhile, to avoid obtaining an un classified fingerprint, this thesis offers a new approach to the fingerprint image classification process entailing three requirements in classifying the fingerprint: the core point and its number, ridge frequency, and ridge direction; whilst the tented arch (TA) is only an additional requirement. The proposed idea increases both the percentage accuracy in classifying fingerprints and time consuming of the system. For Example, the accuracy of the fingerprint classification improves from less than 41 per cent of the fingerprint to 86.48 per cent in average for all of databases.Directorate General of Higher Education of the Ministry of Education and Culture of the Republic of Indonesi

    Echoes of Home

    Get PDF
    The artist discusses her Master of Fine Arts exhibition, Echoes of Home, held at the Tipton Gallery in Johnson City, Tennessee on display March 15 through April 8, 2022. The author provides insight into concepts and influences relating to the creation of the exhibition with perspective on her intimate connection with place and memory. The exhibit features five installations addressing home, elusive memory, and the change and continuity of cultural traditions over time. The works consist of a series of large-scale wild clay vessels, gestural clay bookends, a wall installation of cups with a line drawing, suspended porcelain slabs, and video projection of clay materials “being breathed”. All works explore how the passage of time and the elusiveness of memory affect psychological connection to place. This exhibit is the culmination of iterative exploration of materiality inspired by exchange among the artist, the landscape, and Appalachian culture

    CONTACTLESS FINGERPRINT BIOMETRICS: ACQUISITION, PROCESSING, AND PRIVACY PROTECTION

    Get PDF
    Biometrics is defined by the International Organization for Standardization (ISO) as \u201cthe automated recognition of individuals based on their behavioral and biological characteristics\u201d Examples of distinctive features evaluated by biometrics, called biometric traits, are behavioral characteristics like the signature, gait, voice, and keystroke, and biological characteristics like the fingerprint, face, iris, retina, hand geometry, palmprint, ear, and DNA. The biometric recognition is the process that permits to establish the identity of a person, and can be performed in two modalities: verification, and identification. The verification modality evaluates if the identity declared by an individual corresponds to the acquired biometric data. Differently, in the identification modality, the recognition application has to determine a person's identity by comparing the acquired biometric data with the information related to a set of individuals. Compared with traditional techniques used to establish the identity of a person, biometrics offers a greater confidence level that the authenticated individual is not impersonated by someone else. Traditional techniques, in fact, are based on surrogate representations of the identity, like tokens, smart cards, and passwords, which can easily be stolen or copied with respect to biometric traits. This characteristic permitted a wide diffusion of biometrics in different scenarios, like physical access control, government applications, forensic applications, logical access control to data, networks, and services. Most of the biometric applications, also called biometric systems, require performing the acquisition process in a highly controlled and cooperative manner. In order to obtain good quality biometric samples, the acquisition procedures of these systems need that the users perform deliberate actions, assume determinate poses, and stay still for a time period. Limitations regarding the applicative scenarios can also be present, for example the necessity of specific light and environmental conditions. Examples of biometric technologies that traditionally require constrained acquisitions are based on the face, iris, fingerprint, and hand characteristics. Traditional face recognition systems need that the users take a neutral pose, and stay still for a time period. Moreover, the acquisitions are based on a frontal camera and performed in controlled light conditions. Iris acquisitions are usually performed at a distance of less than 30 cm from the camera, and require that the user assume a defined pose and stay still watching the camera. Moreover they use near infrared illumination techniques, which can be perceived as dangerous for the health. Fingerprint recognition systems and systems based on the hand characteristics require that the users touch the sensor surface applying a proper and uniform pressure. The contact with the sensor is often perceived as unhygienic and/or associated to a police procedure. This kind of constrained acquisition techniques can drastically reduce the usability and social acceptance of biometric technologies, therefore decreasing the number of possible applicative contexts in which biometric systems could be used. In traditional fingerprint recognition systems, the usability and user acceptance are not the only negative aspects of the used acquisition procedures since the contact of the finger with the sensor platen introduces a security lack due to the release of a latent fingerprint on the touched surface, the presence of dirt on the surface of the finger can reduce the accuracy of the recognition process, and different pressures applied to the sensor platen can introduce non-linear distortions and low-contrast regions in the captured samples. Other crucial aspects that influence the social acceptance of biometric systems are associated to the privacy and the risks related to misuses of biometric information acquired, stored and transmitted by the systems. One of the most important perceived risks is related to the fact that the persons consider the acquisition of biometric traits as an exact permanent filing of their activities and behaviors, and the idea that the biometric systems can guarantee recognition accuracy equal to 100\% is very common. Other perceived risks consist in the use of the collected biometric data for malicious purposes, for tracing all the activities of the individuals, or for operating proscription lists. In order to increase the usability and the social acceptance of biometric systems, researchers are studying less-constrained biometric recognition techniques based on different biometric traits, for example, face recognition systems in surveillance applications, iris recognition techniques based on images captured at a great distance and on the move, and contactless technologies based on the fingerprint and hand characteristics. Other recent studies aim to reduce the real and perceived privacy risks, and consequently increase the social acceptance of biometric technologies. In this context, many studies regard methods that perform the identity comparison in the encrypted domain in order to prevent possible thefts and misuses of biometric data. The objective of this thesis is to research approaches able to increase the usability and social acceptance of biometric systems by performing less-constrained and highly accurate biometric recognitions in a privacy compliant manner. In particular, approaches designed for high security contexts are studied in order improve the existing technologies adopted in border controls, investigative, and governmental applications. Approaches based on low cost hardware configurations are also researched with the aim of increasing the number of possible applicative scenarios of biometric systems. The privacy compliancy is considered as a crucial aspect in all the studied applications. Fingerprint is specifically considered in this thesis, since this biometric trait is characterized by high distinctivity and durability, is the most diffused trait in the literature, and is adopted in a wide range of applicative contexts. The studied contactless biometric systems are based on one or more CCD cameras, can use two-dimensional or three-dimensional samples, and include privacy protection methods. The main goal of these systems is to perform accurate and privacy compliant recognitions in less-constrained applicative contexts with respect to traditional fingerprint biometric systems. Other important goals are the use of a wider fingerprint area with respect to traditional techniques, compatibility with the existing databases, usability, social acceptance, and scalability. The main contribution of this thesis consists in the realization of novel biometric systems based on contactless fingerprint acquisitions. In particular, different techniques for every step of the recognition process based on two-dimensional and three-dimensional samples have been researched. Novel techniques for the privacy protection of fingerprint data have also been designed. The studied approaches are multidisciplinary since their design and realization involved optical acquisition systems, multiple view geometry, image processing, pattern recognition, computational intelligence, statistics, and cryptography. The implemented biometric systems and algorithms have been applied to different biometric datasets describing a heterogeneous set of applicative scenarios. Results proved the feasibility of the studied approaches. In particular, the realized contactless biometric systems have been compared with traditional fingerprint recognition systems, obtaining positive results in terms of accuracy, usability, user acceptability, scalability, and security. Moreover, the developed techniques for the privacy protection of fingerprint biometric systems showed satisfactory performances in terms of security, accuracy, speed, and memory usage
    corecore