1,715 research outputs found

    Reconfiguring k-Path Vertex Covers

    Get PDF
    A vertex subset I of a graph G is called a k-path vertex cover if every path on k vertices in G contains at least one vertex from I. The K-PATH VERTEX COVER RECONFIGURATION (K-PVCR) problem asks if one can transform one k-path vertex cover into another via a sequence of k-path vertex covers where each intermediate member is obtained from its predecessor by applying a given reconfiguration rule exactly once. We investigate the computational complexity of K-PVCR from the viewpoint of graph classes under the well-known reconfiguration rules: TS, TJ, and TAR. The problem for k=2, known as the VERTEX COVER RECONFIGURATION (VCR) problem, has been well-studied in the literature. We show that certain known hardness results for VCR on different graph classes can be extended for K-PVCR. In particular, we prove a complexity dichotomy for K-PVCR on general graphs: on those whose maximum degree is three (and even planar), the problem is PSPACE-complete, while on those whose maximum degree is two (i.e., paths and cycles), the problem can be solved in polynomial time. Additionally, we also design polynomial-time algorithms for K-PVCR on trees under each of TJ and TAR. Moreover, on paths, cycles, and trees, we describe how one can construct a reconfiguration sequence between two given k-path vertex covers in a yes-instance. In particular, on paths, our constructed reconfiguration sequence is shortest

    Reconfiguring k-path vertex covers

    Get PDF
    A vertex subset II of a graph GG is called a kk-path vertex cover if every path on kk vertices in GG contains at least one vertex from II. The \textsc{kk-Path Vertex Cover Reconfiguration (kk-PVCR)} problem asks if one can transform one kk-path vertex cover into another via a sequence of kk-path vertex covers where each intermediate member is obtained from its predecessor by applying a given reconfiguration rule exactly once. We investigate the computational complexity of \textsc{kk-PVCR} from the viewpoint of graph classes under the well-known reconfiguration rules: TS\mathsf{TS}, TJ\mathsf{TJ}, and TAR\mathsf{TAR}. The problem for k=2k=2, known as the \textsc{Vertex Cover Reconfiguration (VCR)} problem, has been well-studied in the literature. We show that certain known hardness results for \textsc{VCR} on different graph classes including planar graphs, bounded bandwidth graphs, chordal graphs, and bipartite graphs, can be extended for \textsc{kk-PVCR}. In particular, we prove a complexity dichotomy for \textsc{kk-PVCR} on general graphs: on those whose maximum degree is 33 (and even planar), the problem is PSPACE\mathtt{PSPACE}-complete, while on those whose maximum degree is 22 (i.e., paths and cycles), the problem can be solved in polynomial time. Additionally, we also design polynomial-time algorithms for \textsc{kk-PVCR} on trees under each of TJ\mathsf{TJ} and TAR\mathsf{TAR}. Moreover, on paths, cycles, and trees, we describe how one can construct a reconfiguration sequence between two given kk-path vertex covers in a yes-instance. In particular, on paths, our constructed reconfiguration sequence is shortest.Comment: 29 pages, 4 figures, to appear in WALCOM 202

    Distributed Vertex Cover Reconfiguration

    Get PDF
    Reconfiguration schedules, i.e., sequences that gradually transform one solution of a problem to another while always maintaining feasibility, have been extensively studied. Most research has dealt with the decision problem of whether a reconfiguration schedule exists, and the complexity of finding one. A prime example is the reconfiguration of vertex covers. We initiate the study of batched vertex cover reconfiguration, which allows to reconfigure multiple vertices concurrently while requiring that any adversarial reconfiguration order within a batch maintains feasibility. The latter provides robustness, e.g., if the simultaneous reconfiguration of a batch cannot be guaranteed. The quality of a schedule is measured by the number of batches until all nodes are reconfigured, and its cost, i.e., the maximum size of an intermediate vertex cover. To set a baseline for batch reconfiguration, we show that for graphs belonging to one of the classes {{cycles, trees, forests, chordal, cactus, even-hole-free, claw-free}}, there are schedules that use O(?^{-1}) batches and incur only a 1+? multiplicative increase in cost over the best sequential schedules. Our main contribution is to compute such batch schedules in a distributed setting O(?^{-1} {log^*} n) rounds, which we also show to be tight. Further, we show that once we step out of these graph classes we face a very different situation. There are graph classes on which no efficient distributed algorithm can obtain the best (or almost best) existing schedule. Moreover, there are classes of bounded degree graphs which do not admit any reconfiguration schedules without incurring a large multiplicative increase in the cost at all

    The complexity of dominating set reconfiguration

    Full text link
    Suppose that we are given two dominating sets DsD_s and DtD_t of a graph GG whose cardinalities are at most a given threshold kk. Then, we are asked whether there exists a sequence of dominating sets of GG between DsD_s and DtD_t such that each dominating set in the sequence is of cardinality at most kk and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n)O(n), where nn is the number of vertices in the input graph

    Token Jumping in minor-closed classes

    Full text link
    Given two kk-independent sets II and JJ of a graph GG, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by kk if the input graph is K3,K_{3,\ell}-free. We prove that the result of Ito et al. can be extended to any K,K_{\ell,\ell}-free graphs. In other words, if GG is a K,K_{\ell,\ell}-free graph, then it is possible to decide in FPT-time if II can be transformed into JJ. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class

    Reconfiguration in bounded bandwidth and treedepth

    Full text link
    We show that several reconfiguration problems known to be PSPACE-complete remain so even when limited to graphs of bounded bandwidth. The essential step is noticing the similarity to very limited string rewriting systems, whose ability to directly simulate Turing Machines is classically known. This resolves a question posed open in [Bonsma P., 2012]. On the other hand, we show that a large class of reconfiguration problems becomes tractable on graphs of bounded treedepth, and that this result is in some sense tight.Comment: 14 page

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    The Complexity of Rerouting Shortest Paths

    Get PDF
    The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence. This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time. Finally, a polynomial time algorithm for counting the number of isolated paths is given.Comment: The results on claw-free graphs, chordal graphs and isolated paths have been added in version 2 (april 2012). Version 1 (September 2010) only contained the PSPACE-hardness result. (Version 2 has been submitted.
    corecore