3,238 research outputs found

    A Game-Theoretic Approach for Elastic Distributed Data Stream Processing

    Get PDF
    Distributed data stream processing applications are structured as graphs of interconnected modules able to ingest high-speed data and to transform them in order to generate results of interest. Elasticity is one of the most appealing features of stream processing applications. It makes it possible to scale up/down the allocated computing resources on demand in response to fluctuations of the workload. On clouds, this represents a necessary feature to keep the operating cost at affordable levels while accommodating user-defined QoS requirements. In this article, we study this problem from a game-theoretic perspective. The control logic driving elasticity is distributed among local control agents capable of choosing the right amount of resources to use by each module. In a first step, we model the problem as a noncooperative game in which agents pursue their self-interest. We identify the Nash equilibria and we design a distributed procedure to reach the best equilibrium in the Pareto sense. As a second step, we extend the noncooperative formulation with a decentralized incentive-based mechanism in order to promote cooperation by moving the agreement point closer to the system optimum. Simulations confirm the results of our theoretical analysis and the quality of our strategies

    A Survey on Formation Control of Small Satellites

    Get PDF

    A Control-Theoretic Methodology for Adaptive Structured Parallel Computations

    Get PDF
    Adaptivity for distributed parallel applications is an essential feature whose impor- tance has been assessed in many research fields (e.g. scientific computations, large- scale real-time simulation systems and emergency management applications). Especially for high-performance computing, this feature is of special interest in order to properly and promptly respond to time-varying QoS requirements, to react to uncontrollable environ- mental effects influencing the underlying execution platform and to efficiently deal with highly irregular parallel problems. In this scenario the Structured Parallel Programming paradigm is a cornerstone for expressing adaptive parallel programs: the high-degree of composability of parallelization schemes, their QoS predictability formally expressed by performance models, are basic tools in order to introduce dynamic reconfiguration processes of adaptive applications. These reconfigurations are not only limited to imple- mentation aspects (e.g. parallelism degree modifications), but also parallel versions with different structures can be expressed for the same computation, featuring different levels of performance, memory utilization, energy consumption, and exploitation of the memory hierarchies. Over the last decade several programming models and research frameworks have been developed aimed at the definition of tools and strategies for expressing adaptive parallel applications. Notwithstanding this notable research effort, properties like the optimal- ity of the application execution and the stability of control decisions are not sufficiently studied in the existing work. For this reason this thesis exploits a pioneer research in the context of providing formal theoretical tools founded on Control Theory and Game Theory techniques. Based on these approaches, we introduce a formal model for control- ling distributed parallel applications represented by computational graphs of structured parallelism schemes (also called skeleton-based parallelism). Starting out from the performance predictability of structured parallelism schemes, in this thesis we provide a formalization of the concept of adaptive parallel module per- forming structured parallel computations. The module behavior is described in terms of a Hybrid System abstraction and reconfigurations are driven by a Predictive Control ap- proach. Experimental results show the effectiveness of this work, in terms of execution cost reduction as well as the stability degree of a system reconfiguration: i.e. how long a reconfiguration choice is useful for targeting the required QoS levels. This thesis also faces with the issue of controlling large-scale distributed applications composed of several interacting adaptive components. After a panoramic view of the existing control-theoretic approaches (e.g. based on decentralized, distributed or hierar- chical structures of controllers), we introduce a methodology for the distributed predictive control. For controlling computational graphs, the overall control problem consists in a set of coupled control sub-problems for each application module. The decomposition is- sue has a twofold nature: first of all we need to model the coupling relationships between control sub-problems, furthermore we need to introduce proper notions of negotiation and convergence in the control decisions collectively taken by the parallel modules of the application graph. This thesis provides a formalization through basic concepts of Non-cooperative Games and Cooperative Optimization. In the notable context of the dis- tributed control of performance and resource utilization, we exploit a formal description of the control problem providing results for equilibrium point existence and the compari- son of the control optimality with different adaptation strategies and interaction protocols. Discussions and a first validation of the proposed techniques are exploited through exper- iments performed in a simulation environment

    Improving stability in Adaptive Distributed Parallel applications: a cooperative predictive approach

    Get PDF
    With this thesis we take a step further on improving reconfiguration decisions in adaptive distributed parallel computations. The concept of switching cost is introduced with the aim of reducing the amount of reconfigurations and of improving the reconfigurations stability in dynamic execution scenar- ios. Computation modules control is based on the Model-Based Predictive Control (MPC) approach. We study the effectiveness of this approach in parallel distributed computations, where each module cooperates to find global optimal reconfiguration trajectory. Experimental results are obtained by means of experiments performed in a simulation environment

    Antifragility = Elasticity + Resilience + Machine Learning: Models and Algorithms for Open System Fidelity

    Full text link
    We introduce a model of the fidelity of open systems - fidelity being interpreted here as the compliance between corresponding figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony, in which the figure of interest is the physical and the system's notion of time. Our model covers two orthogonal aspects of fidelity, the first one focusing on a system's steady state and the second one capturing that system's dynamic and behavioural characteristics. We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect's qualities and limitations. Finally we sketch the elements of a new model coupling both of the first model's aspects and complementing them with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional criteria for antifragile systems.Comment: Preliminary version submitted to the 1st International Workshop "From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems" (ANTIFRAGILE 2014), https://sites.google.com/site/resilience2antifragile

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    • …
    corecore