764 research outputs found

    Using reconfigurable computing technology to accelerate matrix decomposition and applications

    Get PDF
    Matrix decomposition plays an increasingly significant role in many scientific and engineering applications. Among numerous techniques, Singular Value Decomposition (SVD) and Eigenvalue Decomposition (EVD) are widely used as factorization tools to perform Principal Component Analysis for dimensionality reduction and pattern recognition in image processing, text mining and wireless communications, while QR Decomposition (QRD) and sparse LU Decomposition (LUD) are employed to solve the dense or sparse linear system of equations in bioinformatics, power system and computer vision. Matrix decompositions are computationally expensive and their sequential implementations often fail to meet the requirements of many time-sensitive applications. The emergence of reconfigurable computing has provided a flexible and low-cost opportunity to pursue high-performance parallel designs, and the use of FPGAs has shown promise in accelerating this class of computation. In this research, we have proposed and implemented several highly parallel FPGA-based architectures to accelerate matrix decompositions and their applications in data mining and signal processing. Specifically, in this dissertation we describe the following contributions: • We propose an efficient FPGA-based double-precision floating-point architecture for EVD, which can efficiently analyze large-scale matrices. • We implement a floating-point Hestenes-Jacobi architecture for SVD, which is capable of analyzing arbitrary sized matrices. • We introduce a novel deeply pipelined reconfigurable architecture for QRD, which can be dynamically configured to perform either Householder transformation or Givens rotation in a manner that takes advantage of the strengths of each. • We design a configurable architecture for sparse LUD that supports both symmetric and asymmetric sparse matrices with arbitrary sparsity patterns. • By further extending the proposed hardware solution for SVD, we parallelize a popular text mining tool-Latent Semantic Indexing with an FPGA-based architecture. • We present a configurable architecture to accelerate Homotopy l1-minimization, in which the modification of the proposed FPGA architecture for sparse LUD is used at its core to parallelize both Cholesky decomposition and rank-1 update. Our experimental results using an FPGA-based acceleration system indicate the efficiency of our proposed novel architectures, with application and dimension-dependent speedups over an optimized software implementation that range from 1.5ÃÂ to 43.6ÃÂ in terms of computation time

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Métodos de controle modal tolerante a danos para estruturas flexíveis

    Get PDF
    Orientadores: Eurípedes Guilherme de Oliveira Nóbrega, Nazih Mechbal, Gérard Maurice Henri CoffignalTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: Estruturas inteligentes estão cada vez mais presentes em diferentes aplicações na indústria, em particular nas áreas de aeronáutica e engenharia civil. Essas estruturas possuem características que permitem interações com o ambiente, adaptando suas propriedades de acordo com as necessidades (rigidez, amortecimento, viscosidade, etc.), monitorando a própria saúde estrutural (SHM, de Structural Health Monitoring) ou controlando suas vibrações. Atualmente, os métodos ativos para controle de vibrações não respondem adequadamente a mudanças na dinâmica estrutural causada por dano, apesar da boa capacidade de rejeição a perturbações externas. O controle ativo tolerante a danos (DTAC, de Damage-Tolerant Active Control) é uma área recente de pesquisa que objetiva desenvolver métodos integrados para reduzir vibrações e, ao mesmo tempo, monitorar a integridade estrutural, sendo possível identificar a ocorrência de danos e, com isso, reconfigurar o controlador ativo de vibrações. Esta tese contribui com a área de DTAC propondo uma nova abordagem de controle modal e algumas estratégias de aplicações. Os métodos propostos focam no controle de vibrações de estruturas flexíveis sujeitas a danos com múltiplos sensores e atuadores não colocados. Os capítulos apresentam quatro temas principais e as conclusões. O Capítulo 2 revisa o problema subótimo H? e sua respectiva solução por meio da abordagem por desigualdades matriciais lineares, que é uma ferramenta fundamental para o desenvolvimento dos tópicos subsequentes. O Capítulo 3 introduz o método de controle modal de vibrações baseado na norma H? modal, a qual revela elevada seletividade modal, permitindo a concentração de energia de controle sobre os efeitos do dano e apresentando robustez em relação ao spillover e à variação paramétrica. Uma nova estratégia de controle é desenvolvida no Capítulo 4, tendo em conta o conhecimento existente sobre as regiões da estrutura com alta probabilidade de sofrer danos, o que leva a requisitos específicos no projeto do controlador H? modal. Uma técnica de SHM é usada para avaliar o efeito do dano em cada modo, dado que é usado para projetar um controlador preventivo. O Capítulo 5 apresenta uma metodologia modal de dupla malha que lida com a imprevisibilidade do dano, garantindo um bom compromisso entre robustez e desempenho para a estrutura saudável ou danificada. Para atingir esse objetivo, o controlador modal da primeira malha é projetado para atender os requisitos de desempenho para a estrutura saudável. O controlador da segunda malha é reconfigurado objetivando assegurar robustez e um desempenho satisfatório quando, ou se, um dano ocorre. Essa lei de controle é baseada em um observador de estados e em um algoritmo de SHM para reconfigurar o controlador online. Todas as técnicas propostas são testadas utilizando estruturas inteligentes criadas a partir de simulações (analíticas e de elementos finitos) e/ou experimentos. O último capítulo discute os principais resultados obtidos para cada abordagem descrita nos capítulos anterioresAbstract: Smart structures have increasingly become present in different industry applications and particularly in the fields of aeronautics and civil engineering. These structures have features that allow interactions with the environment, adapting their characteristics according to the needs (stiffness, damping, viscosity, etc.), monitoring their health or controlling their vibrations. Today, smart structure active control methods do not respond appropriately to damage, despite the capability of good rejection of external disturbances. Damage-tolerant active control (DTAC) is a recent research area that aims to develop integrated approaches to reduce vibrations while monitoring the structure integrity, identifying damage occurrence and reconfiguring the control law of the adopted active vibration control method. This thesis contributes to the DTAC area by proposing a novel modal control framework and some application strategies. The developed methods focus on noncollocated flexible structures, where multiple piezoelectric sensors and actuators are used to attenuate damaged structure vibration. The chapters present four main topics and the conclusions. Chapter 2 reviews the regular suboptimal H? problem and its respective solution based on the linear matrix inequality approach, which is a fundamental tool for the development of subsequent topics. Chapter 3 introduces the modal H?-norm-based method for vibration control, which reveals high modal selectivity, allowing control energy concentration on damage effects and presenting robustness to spillover and parameter variation. A new control strategy is developed in Chapter 4, taking into account existing knowledge about the structure stressed regions with high probability of damage occurrence, leading to specific requirements in the modal H?-controller design. A structural health monitoring (SHM) technique assesses each damaged mode behavior, which is used to design a preventive controller. Chapter 5 presents a novel modal double-loop control methodology to deal with the unpredictability of damage, nevertheless ensuring a good compromise between robustness and performance to both healthy and damaged structures. For this purpose, the first-loop modal controller is designed to comply with regular requirements for the healthy structure behavior and the second-loop controller is reconfigured aiming to ensure satisfactory performance and robustness when and if damage occurs, based on a state observer and an SHM technique to adapt the controller online. In all these chapters, simulated (analytical- and finite-element-based) and/or experimental smart structures are used to examine the proposed methodology under the respective control strategies. The last chapter summarises the achieved results for each different approach described in the previous chaptersDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânica141621/2012-512337/13-7CNPQCAPE

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Retrofit systems for reconfiguration in civil aviation

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.Includes bibliographical references (p. 215-223).A new concept for retrofitting a reconfiguration module to an existing control law is reported in this thesis. The concept is motivated by the need for low cost, add-on modules that improve air safety in the existing fleet of civil air transport vehicles. A direct adaptive approach that accommodates control surface nonlinearities is adopted, which uses a slowly adapting model of the closed-loop aircraft as the reference model. The motivation, benefits, and components of the architecture are presented. In addition, the issues of control surface magnitude and rate saturation are addressed. A proof of stability is outlined for input-error adaptation when position and rate saturation are present. The reconfiguration architecture is demonstrated using an F/A-18 and a generic transport nonlinear simulator. General issues associated with commercial transport reconfiguration are highlighted. In both the longitudinal and directional axes, the control surfaces are not well balanced from a reconfiguration viewpoint. As a result, a novel reconfiguration control allocation scheme was devised that blends in all the control effectors in a given axis to perform the reconfiguration task. The simulation results revealed that the reconfiguration architecture does provide reconfiguration functionality for a wide variety of control surface failures. The reconfiguration potential is illustrated through comparisons of post-failure performance with and without reconfiguration via non-linear simulations. Additionally, comparisons between post-failure performance and nominal performance are made through non-linear simulations, closed-loop frequency responses, and aircraft handling qualities. For all of the failure scenarios illustrated, the simulation results showed that the aircraft without reconfiguration departs; with reconfiguration, nominal performance is achieve provided that adequate control authority exists post-failure.by Jerry M. Wohletz.Ph.D

    Model-based Fault Diagnosis and Fault Accommodation for Space Missions : Application to the Rendezvous Phase of the MSR Mission

    Get PDF
    The work addressed in this thesis draws expertise from actions undertaken between the EuropeanSpace Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoirede l’Intégration du Matériau au Système) which develop new generations of integrated Guidance, Navigationand Control (GNC) units with fault detection and tolerance capabilities. The reference mission isthe ESA’s Mars Sample Return (MSR) mission. The presented work focuses on the terminal rendezvoussequence of the MSR mission which corresponds to the last few hundred meters until the capture. Thechaser vehicle is the MSR Orbiter, while the passive target is a diameter spherical container. The objectiveat control level is a capture achievement with an accuracy better than a few centimeter. The research workaddressed in this thesis is concerned by the development of model-based Fault Detection and Isolation(FDI) and Fault Tolerant Control (FTC) approaches that could significantly increase the operational andfunctional autonomy of the chaser during rendezvous, and more generally, of spacecraft involved in deepspace missions. Since redundancy exist in the sensors and since the reaction wheels are not used duringthe rendezvous phase, the work presented in this thesis focuses only on the thruster-based propulsionsystem. The investigated faults have been defined in accordance with ESA and TAS requirements andfollowing their experiences. The presented FDI/FTC approaches relies on hardware redundancy in sensors,control redirection and control re-allocation methods and a hierarchical FDI including signal-basedapproaches at sensor level, model-based approaches for thruster fault detection/isolation and trajectorysafety monitoring. Carefully selected performance and reliability indices together with Monte Carlo simulationcampaigns, using a high-fidelity industrial simulator, demonstrate the viability of the proposedapproaches.Les travaux de recherche traités dans cette thèse s’appuient sur l’expertise des actionsmenées entre l’Agence spatiale européenne (ESA), l’industrie Thales Alenia Space (TAS) et le laboratoirede l’Intégration du Matériau au Système (IMS) qui développent de nouvelles générations d’unités intégréesde guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance desdéfauts. La mission de référence retenue dans cette thèse est la mission de retour d’échantillons martiens(Mars Sample Return, MSR) de l’ESA. Ce travail se concentre sur la séquence terminale du rendez-vous dela mission MSR qui correspond aux dernières centaines de mètres jusqu’à la capture. Le véhicule chasseurest l’orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. L’objectif au niveaude contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres. Les travaux derecherche traités dans cette thèse s’intéressent au développement des approches sur base de modèle de détectionet d’isolation des défauts (FDI) et de commande tolérante aux défaillances (FTC), qui pourraientaugmenter d’une manière significative l’autonomie opérationnelle et fonctionnelle du chasseur pendant lerendez-vous et, d’une manière plus générale, d’un vaisseau spatial impliqué dans des missions située dansl’espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sontpas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulementvers les systèmes de propulsion par tuyères. Les défaillances examinées ont été définies conformément auxexigences de l’ESA et de TAS et suivant leurs expériences. Les approches FDI/FTC présentées s’appuientsur la redondance de capteurs, la redirection de contrôle et sur les méthodes de réallocation de contrôle,ainsi que le FDI hiérarchique, y compris les approches à base de signaux au niveau de capteurs, les approchesà base de modèle de détection/localisation de défauts de propulseur et la surveillance de sécuritéde trajectoire. Utilisant un simulateur industriel de haute-fidélité, les indices de performance et de fiabilitéFDI, qui ont été soigneusement choisis accompagnés des campagnes de simulation de robustesse/sensibilitéMonte Carlo, démontrent la viabilité des approches proposées
    corecore