706 research outputs found

    Robust Software Architecture for Robots

    Get PDF
    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys

    Human robot collaboration in the MTA SZTAKI learning factory facility at Gyor

    Get PDF
    In recent years, interest has grown in environments where humans and robots collaborate, complementing the strengths and advantages of humans and machines. Design, construction and adjustment of such environments, as well as the training of operating personnel, requires thorough understanding of the nature of human robot collaboration which previous automation expertise does not necessarily provide. The learning factory currently being constructed by MTA SZTAKI in Gyor aims to provide hands-on experience in the design and operation of facilities supporting human robot collaboration, mainly in assembly tasks. The work-in progress paper presents design principles, functionalities and structure of the facility, and outlines deployment plans in education, training, research and development in the academic and industrial sectors. (C) 2018 The Authors. Published by Elsevier B.V

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic

    Morphological Development in robotic learning: A survey

    Get PDF

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think
    • …
    corecore