13,145 research outputs found

    Lunar Applications in Reconfigurable Computing

    Get PDF
    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    Dynamically Reconfigurable Systems-on-Chip

    Get PDF
    The design space for dynamically reconfigurable SoCs can be seen in three dimensions: 1) the system architecture for computation and communication, ranging from dataflow-oriented dedicated logic blocks to instruction flow-oriented microprocessor cores, from dedicated point-to-point connections to Networks-on-Chip. 2) the granularity of reconfigurable elements, ranging from simple logic Look-Up-Tables to complex hardware accelerator engines and reconfigurable interconnect structures. 3) the configuration life cycle, ranging from application changes (in the order of seconds) to instruction-based reconfiguration (in the order of nanoseconds). We propose to use dynamically reconfigurable computing for video processing in driver assistance applications. In future automotive systems, video-based driver assistance will improve security. Video processing for driver assistance requires real time implementation of complex algorithms. A pure software implementation, based on low cost embedded CPUs in automotive environments, does not offer the required real time processing. Therefore hardware acceleration is necessary. Dedicated hardware circuits (ASICs) can offer the required real time processing, but they do not offer the necessary flexibility. Specific driving conditions, e.g. highway, country side, urban traffic, tunnel, require specific optimized algorithms. Reconfigurable hardware offers high potential for real time video processing and adaptability to various driving conditions. Our system architecture consists of embedded CPU cores for high-level application code, dedicated hardware accelerator engines for low level pixel processing, and an application-specific memory system. The hardware accelerators and the memory system are dynamically reconfigurable, i.e. hardware accelerator engines can be exchanged during runtime, controlled by the application code on the CPU. The life cycle of a configuration depends on the change of driving conditions. A requirement on the reconfiguration time is given by the frame rate of the video signal, e.g. 40 msec for the exchange and relocation of new engines

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. For the recently available High Definition (HD) video formats, the computational complexity of De full search (FS) ME algorithm is prohibitively high, whereas the PSNR obtained by fast search ME algorithms is low. Therefore, ill this paper, we present Dynamically Variable Step Search (DVSS) ME algorithm for Processing high definition video formats and a dynamically reconfigurable hardware efficiently implementing DVSS algorithm. The architecture for efficiently implementing DVSS algorithm. The simulation results showed that DVSS algorithm performs very close to FS algorithm by searching much fewer search locations than FS algorithm and it outperforms successful past search ME algorithms by searching more search locations than these algorithms. The proposed hardware is implemented in VHDL and is capable, of processing high definition video formats in real time. Therefore, it can be used in consumer electronics products for video compression, frame rate up-conversion and de-interlacing(1)

    P2IP: A novel low-latency Programmable Pipeline Image Processor

    Get PDF
    International audienceThis paper presents a novel systolic Coarse-Grained Reconfigurable Architecture for real-time image and video processing called P 2 IP. The P 2 IP is a scalable architecture that combines the low-latency characteristic of systolic array architectures with a runtime reconfigurable datapath. Reconfigurabil-ity of the P 2 IP enables it to perform a wide range of image pre-processing tasks directly on a pixel stream. The versatility of the P 2 IP is demonstrated through three image processing algorithms mapped onto the architecture, implemented in an FPGA-based platform. The obtained results show that the P 2 IP can achieve up to 129 fps in Full HD 1080p and 32 fps in 4K 2160p what makes it suitable for modern high-definition applications

    A novel system architecture for real-time low-level vision

    Get PDF
    A novel system architecture that exploits the spatial locality in memory access that is found in most low-level vision algorithms is presented. A real-time feature selection system is used to exemplify the underlying ideas, and an implementation based on commercially available Field Programmable Gate Arrays (FPGA’s) and synchronous SRAM memory devices is proposed. The peak memory access rate of a system based on this architecture is estimated at 2.88 G-Bytes/s, which represents a four to five times improvement with respect to existing reconfigurable computers

    A High performance and low cost hardware arcitecture for H.264 transform and quantization algorithms

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward transform and quantization and inverse transform and quantization algorithms used in H.264 / MPEG4 Part 10 video coding standard. The hard-ware architecture is based on a reconfigurable datapath with only one multiplier. This hardware is designed to be used as part of a complete low power H.264 video coding system for portable appli-cations. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to work at 210 MHz in a 0.18ÂŽ ASIC implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively
    • 

    corecore