3,937 research outputs found

    A binary self-organizing map and its FPGA implementation

    Get PDF
    A binary Self Organizing Map (SOM) has been designed and implemented on a Field Programmable Gate Array (FPGA) chip. A novel learning algorithm which takes binary inputs and maintains tri-state weights is presented. The binary SOM has the capability of recognizing binary input sequences after training. A novel tri-state rule is used in updating the network weights during the training phase. The rule implementation is highly suited to the FPGA architecture, and allows extremely rapid training. This architecture may be used in real-time for fast pattern clustering and classification of the binary features

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Probabilistic Principle Component Analysis based Feature Extraction of Embedded System Applications with Deep Neural Network based Implementation in FPGA

    Get PDF
    The study of hardware and software systems is of major are very important advent in new devices for communication and progress in system of security. In fast pace mobile and embedded devices application in every day’s life leads some new emerging area for research in data mining field. In this we have some technologies which have demand and error free using the principle of component of PPCA. For Embedded system the applications of PCA is basically applied initially for the lessen the having different qualities especially being to simple of the data. PPCA which have the updated version of PCA which is surveyed by similarity measure. In this work, experiments are extensively carried out, using a FPGA based light weight cryptographic data set having benchmark set to check and illustrate the viability, competence, litheness which are reconfigurable embedded system which are having data mining . Which have FPGA are reconfigurable for the computing architectures for hardware and in neural network. FPGA using the multilayer Cascaded for neural network which are forward in nature (CFFNN) and Deep Neural Network also called as DNN with a huge neuron is still a thought-provoking task. This shortcoming leads to elect the FPGA capacity for a particular application we have used the method of implementation which has two neural network have been implemented and compared , namely, CFFNN and DNN. It can be shown that for reconfigurable embedded system, PPCA based data mining and Machine learning based realization can give more speed up less iteration and more space savings when we have compared it with the static conventional version

    Weighted p-bits for FPGA implementation of probabilistic circuits

    Full text link
    Probabilistic spin logic (PSL) is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (p-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve problems of optimization, inference and also to implement precise Boolean functions in an "inverted" mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this paper we present a scalable FPGA implementation of such invertible p-circuits. We implement a "weighted" p-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted p-bits to which a large class of problems beyond invertible Boolean logic can be mapped, and how invertibility can be applied to interesting problems such as the NP-complete Subset Sum Problem by solving a small instance of this problem in hardware
    corecore