49 research outputs found

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    Design of Special Function Units in Modern Microprocessors

    Get PDF
    Today’s computing systems demand high performance for applications such as cloud computing, web-based search engines, network applications, and social media tasks. Such software applications involve an extensive use of hashing and arithmetic operations in their computation. In this thesis, we explore the use of new special function units (SFUs) for modern microprocessors, to accelerate such workloads. First, we design an SFU for hashing. Hashing can reduce the complexity of search and lookup from O(p) to O(p/n), where n bins are used and p items are being processed. In modern microprocessors, hashing is done in software. In our work, we propose a novel hardware hash unit design for use in modern microprocessors. Since the hash unit is designed at the hardware level, several advantages are obtained by our approach. First, a hardware-based hash unit executes a single hash instruction to perform a hash operation. In a software-based hashing in modern microprocessors, a hash operation is compiled into multiple instructions, thereby degrading performance. Second, software-based hashing stores hash data in a DRAM (also, hash operation entries can be stored in one of the cache levels). In a hardware-based hash unit, hash data is stored in a dedicated memory module (a hardware hash table), which improves performance. Third, today’s operating systems execute multiple applications (processes) in parallel, which entail high memory utilization. Hence the operating systems require many context switching between different processes, which results in many cache misses. In a hardware-based hash unit, the cache misses is reduced significantly using the dedicated memory module (hash table). These advantages all reduce the power consumption and increase the overall system performance significantly with a minimal increase in the microprocessor’s die area. We evaluate our hardware-based hash unit and compare its performance with software-based hashing. We start by evaluating our design approach at the micro-architecture level in terms of system performance. After that, we design our approach at the circuit level design to obtain the area overhead. Also, we analyze our design’s power and delay for each hash operation. These results are compared with a traditional hashing implementation. Then, we present an FPGA-based coprocessor for hash unit acceleration, applied to a virus checking application. Second, we present an SFU to speed up arithmetic operations. We call this arithmetic SFU a programmable arithmetic unit (PAU). In modern microprocessors, applications that require heavy arithmetic computations are done in software. To improve the performance for such computations, we present a programmable arithmetic unit (PAU), a partially reconfigurable methodology for arithmetic applications. The PAU consists of a set of IP blocks connected to a reconfigurable FPGA controller via a fast mesh-based interconnect. The IP blocks in the PAU can be any IP block such as adders, subtractors, multipliers, comparators and sign extension units. The PAU can have one or more copies of the same IP block (for example, 5 adders and 7 multipliers). The FPGA controller is an on-chip FPGA-based reconfigurable control fabric. The FPGA controller enables different arithmetic applications to be embedded on the PAU. The FPGA controller is programmed for different applications. The reconfigurable logic is based on a LUT-based design like a traditional FPGA. The FPGA controller and the IP blocks in the PAU communicate via a high speed ring data fabric. In our work, we use the PAU as an SFU in modern microprocessors. We compare the performance of different hardware-based arithmetic applications in the PAU with software-based implementations in modern microprocessors

    Dynamically Reconfigurable Architectures and Systems for Time-varying Image Constraints (DRASTIC) for Image and Video Compression

    Get PDF
    In the current information booming era, image and video consumption is ubiquitous. The associated image and video coding operations require significant computing resources for both small-scale computing systems as well as over larger network systems. For different scenarios, power, bitrate and image quality can impose significant time-varying constraints. For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant constraints on energy and power. Similarly, computer networks provide time-varying bandwidth that can depend on signal strength (e.g., wireless networks) or network traffic conditions. Alternatively, the users can impose different constraints on image quality based on their interests. Traditional image and video coding systems have focused on rate-distortion optimization. More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated image quality metrics. However, these systems are based on fixed hardware configurations that provide limited options over power consumption. The use of dynamic partial reconfiguration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively control dynamic power consumption by jointly considering software-hardware configurations. This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy optimization and demonstrates a wide variety of applications in both image and video compression. In each application, a family of Pareto-optimal configurations are developed that allow fine control in the rate-quality-power/energy optimization space. The term Dynamically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRASTIC) is used to describe the derived systems. DRASTIC covers both software-only as well as software-hardware configurations to achieve fine optimization over a set of general modes that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) minimum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfactory performance. In joint software-hardware configurations, DRASTIC provides an effective approach for dynamic power optimization. For software configurations, DRASTIC provides an effective method for energy consumption optimization by controlling processing times. The dissertation provides several applications. First, stochastic methods are given for computing quantization tables that are optimal in the rate-quality space and demonstrated on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth, the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding for the emerging High Efficiency Video Coding standard (HEVC)

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences
    corecore