110 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Multi-channel 180pJ/b 2.4GHz FBAR-based receiver

    Get PDF
    A three-channel 2.4GHz OOK receiver is designed in 65nm CMOS and leverages MEMS to enable multiple sub-channels of operation within a band at a very low energy per received bit. The receive chain features an LNA/mixer architecture that efficiently multiplexes signal pathways without degrading the quality factor of the resonators. The single-balanced mixer and ultra-low power ring oscillator convert the signal to IF, where it is efficiently amplified to enable envelope detection. The receiver consumes a total of 180pJ/b from a 0.7V supply while achieving a BER=10-3 sensitivity of -67dBm at a 1Mb/s data rate.Semiconductor Research Corporation. Interconnect Focus CenterNatural Sciences and Engineering Research Council of Canada (Fellowship

    Study on Performance Analysis of CMOS RF front-end circuits for 2.4GHz Wireless Applications

    Get PDF
    In this paper, low voltage design concepts and new CMOS front-end circuits for 2.4GHz wireless applications are presented. The performances of these circuits are analysed and compared with other existing structures using TSMC 0.18-μm CMOS technology scale. The design trade-offs between impedance matching, power gain and noise figure of low-noise amplifiers are highlighted. The advantage of the introduced mixer topology is expressed in terms of conversion gain, noise figure and linearity. At a supply voltage of 1.8V, the design and performance analysis have been performed using Agilent’s Advanced Design System (ADS2009) software

    A novel and miniaturized 433/868MHz multi-band wireless sensor platform for body sensor network applications

    Get PDF
    Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications

    Power reconfigurable receiver model for energy-aware applications

    Get PDF
    International audienceThis paper presents a reconfigurable receiver model whose purpose is to enable the study of reconfiguration strategies for future energy-aware and adaptive transceivers. This model is based on Figure of Merits of measured circuits. To account for real-life RF interference mechanisms, a link quality estimator is also provided.We show that adapting the receiver performance to the channel conditions can lead to considerable power saving. The models proposed can easily be implemented in a wireless network simulation in order to validate the value of a reconfigurable architecture in real-world deployment scenarios

    Energy efficiency analysis in wireless communication systems with reconfigurable RF

    Get PDF
    Orientador: Prof. Dr. André Augusto MarianoCoorientador: Prof. Dr. Glauber Gomes de Oliveira BranteTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 28/05/2021Inclui referências: p. 74-84Área de concentração: Sistemas EletrônicosResumo: Alta eficiˆencia energ'etica (EE) 'e crucial para aplicac¸ ˜oes da Internet das Coisas que operam remotamente, uma vez que os n'os sem fio s˜ao tipicamente alimentados por bateria. Diferentes t'ecnicas de diversidade espacial tais com o uso de m'ultiplas antenas (MIMO) nos n'os do transmissor e receptor, bem como o uso de comunicac¸ ˜ao cooperativa podem ser exploradas para melhorar a EE. Al'em disso, o uso de transceptores de r'adio frequˆencia (RF) reconfigur'aveis s˜ao considerados uma soluc¸ ˜ao interessante para sistemas com restric¸ ˜ao de energia, pois permitem alterar o seu ponto de funcionamento, bem como o seu consumo de potˆencia, adaptando-se aos diferentes requisitos de comunicac¸ ˜ao. Nessa tese, uma nova abordagem para economizar energia inclui no modelo do sistema de comunicac¸ ˜ao o uso de transceptores de RF reconfigur'aveis. Mais especificamente, os componentes envolvidos em nossa estrutura de otimizac¸ ˜ao de consumo de potˆencia s˜ao o amplificador de potˆencia (PA) no transmissor e o amplificador de baixo ru'?do (LNA) no receptor. Nosso objetivo 'e mostrar que os circuitos de RF baseados em operac¸ ˜oes mult'?modo podem melhorar significativamente a EE. Assim, realizamos uma selec¸ ˜ao conjunta dos melhores modos de operac¸ ˜ao para os circuitos do PA e do LNA para diferentes esquemas de transmiss˜ao em dois cen'arios de rede: i) comunicac¸ ˜ao n˜ao-cooperativa em que os n'os s˜ao equipados com m'ultiplas antenas, para a qual consideramos a selec¸ ˜ao de antenas (AS) e a decomposic¸ ˜ao por valores singulares (SVD); e ii) comunicac¸ ˜ao cooperativa em que os n'os s˜ao equipados com uma 'unica antena, para a qual consideramos decodificac¸ ˜ao incremental e encaminha (IDF) por rel'e. Em nosso primeiro cen'ario proposto, comparamos os circuitos reconfigur 'aveis do PA e do LNA com amplificadores de RF n˜ao-reconfigur'aveis do estado-da-arte dispon'?veis na literatura. Nesta comparac¸ ˜ao, ao explorar as caracter'?sticas dos amplificadores reconfigur'aveis de RF, mostramos uma melhora de EE de mais de 40% em distˆancias curtas para as comunicac¸ ˜oes MIMO. Ao comparar os esquemas MIMO, a t'ecnica AS apresenta melhor desempenho para distˆancias mais curtas, enquanto que o SVD permite transmiss˜oes mais longas, pois explora todas as antenas dispon'?veis. Al'em disso, a otimizac¸ ˜ao da eficiˆencia espectral contribui para aumentar ainda mais a EE. Por fim, investigamos o efeito do n'umero de antenas, em que a EE do AS sempre aumenta com o n'umero de antenas, enquanto que o SVD apresenta um n'umero 'otimo de antenas. Para o segundo cen'ario, propomos uma an'alise de EE para o esquema IDF, auxiliada por um canal de retorno para realizar a selec¸ ˜ao de rel'es. Al'em disso, comparamos o desempenho do IDF com os esquemas MIMO n˜ao-cooperativos. Os resultados mostram que uma melhor EE 'e obtida por meio de t'ecnicas de selec¸ ˜ao de antenas, principalmente quando aplicadas tanto no transmissor quanto no receptor. Tamb'em analisamos o impacto do rel'e na cooperac¸ ˜ao, uma vez que o n'o do rel'e opera apenas se necess'ario, a maior parte da carga de reconfigurabilidade 'e do rel'e, enquanto os modos de operac¸ ˜ao do PA e do LNA tendem a ser razoavelmente fixados nos n'os de origem e destino. Por fim, os resultados mostram que o n'umero de rel'es contribui para alcanc¸ar transmiss˜oes de longa distˆancia. Palavras-chave: Eficiˆencia Energ'etica, Transceptores de RF Reconfigur'aveis, Diversidade Espacial, M'ultiplas Antenas, Comunicac¸ ˜oes Cooperativas.Abstract: High energy efficiency (EE) is crucial for Internet of Things applications that operate remotely, since wireless nodes are typically battery-powered. Different spatial diversity techniques such as the use of multiple antennas (MIMO) at the transmitter and receiver nodes, as well as the use of cooperative communication can be exploited to improve the EE. In addition, the use of radio frequency (RF) transceivers are considered an interesting solution for powerrestricted systems, as they allow changing their operating point, as well as their power consumption, adapting to different communication requirements. In this thesis, a novel energy-saving approach includes in the communication system model the use of reconfigurable RF transceivers. More specifically, the components involved in our power consumption optimization framework are the power amplifier (PA) at the transmitter and the low noise amplifier (LNA) at the receiver. Our goal is to show that RF circuits based on multimode operation can significantly improve the EE. Thus, we perform a joint selection of the best operating modes for the PA and LNA circuits for different transmission schemes in two network scenarios: i) non-cooperative communication where the nodes are equipped with multiple antennas, for which we consider antenna selection (AS) and singular value decomposition (SVD) beamforming; and ii) cooperative communication where the nodes are equipped with single antenna, for which we consider incremental decode and forward (IDF) relaying. In our first proposed scenario, we compare the reconfigurable PA and LNA circuits with state-of-the-art non-reconfigurable RF amplifiers available in the literature. In this comparison, by exploiting the characteristics of reconfigurable RF amplifiers, we show an EE improvement of more than 40% at short distances for MIMO communications. When comparing MIMO schemes, the AS technique performs better for shorter distances, while the SVD allows for longer transmissions, as it exploits all available antennas. In addition, the optimization of the spectral efficiency contributes to further increase the EE. Finally, we investigate the effect of the number of antennas, in which the EE of AS always increases with the number of antennas, while SVD presents an optimal number of antennas. For the second scenario, we propose an EE analysis for the IDF scheme, aided by a feedback channel to perform relay selection. In addition, we compare the performance of the IDF with non-cooperative MIMO schemes. The results show that a better EE is obtained through antenna selection techniques, especially when applied at both transmitter and receiver. We also analyze the impact of the relay on cooperation, as the relay node operates only if necessary, most of the reconfigurability charge ends up at the relay, whereas the PA and LNA operating modes tend to be reasonably fixed at the source and destination nodes. Finally, results show that the number of relays contributes to achieving long distance transmissions. Keywords: Energy Efficiency, Reconfigurable RF Transceivers, Spatial Diversity, Multiple Antennas, Cooperative Communications

    Design of Low-Power Short-Distance Transceiver for Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    RF Integrated Circuits for Energy Autonomous Sensor Nodes.

    Full text link
    The exponential growth in the semiconductor industry has enabled computers to pervade our everyday lives, and as we move forward many of these computers will have form factors much smaller than a typical laptop or smartphone. Sensor nodes will soon be deployed ubiquitously, capable of capturing information of their surrounding environment. The next step is to connect all these different nodes together into an entire interconnected system. This “Internet of Things” (IoT) vision has incredible potential to change our lives commercially, societally, and personally. The backbone of IoT is the wireless sensor node, many of which will operate under very rigorous energy constraints with small batteries or no batteries at all. It has been shown that in sensor nodes, radio communication is one of the biggest bottlenecks to ultra-low power design. This research explores ways to reduce energy consumption in radios for wireless sensor networks, allowing them to run off harvested energy, while maintaining qualities that will allow them to function in a real world, multi-user environment. Three different prototypes have been designed demonstrating these techniques. The first is a sensitivity-reduced nanowatt wake-up radio which allows a sensor node to actively listen for packets even when the rest of the node is asleep. CDMA codes and interference rejection reduce the potential for energy-costly false wake-ups. The second prototype is a full transceiver for a body-worn EKG sensor node. This transceiver is designed to have low instantaneous power and is able to receive 802.15.6 Wireless Body Area Network compliant packets. It uses asymmetric communication including a wake-up receiver based on the previous design, UWB transmitter and a communication receiver. The communication receiver has 10 physical channels to avoid interference and demodulates coherent packets which is uncommon for low power radios, but dictated by the 802.15.6 standard. The third prototype is a long range transceiver capable of >1km communication range in the 433MHz band and able to interface with an existing commercial radio. A digitally assisted baseband demodulator was designed which enables the ability to perform bit-level as well as packet-level duty cycling which increases the radio's energy efficiency.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110432/1/nerobert_1.pd

    Joint synchronization and calibration of multi-channel transform-domain charge sampling receivers

    Get PDF
    Transform-domain (TD) sampling is seen as a potential candidate for wideband and ultra-wideband high-performance receivers and is investigated in detail in this research. TD receivers expand the signal over a set of basis functions and operate on the digitized basis coefficients. This parallel digital signal processing relaxes the sampling requirements opening the doors to higher dynamic range and wider bandwidth in receivers. This research is focused on the implementation of a high performance multi-channel wideband receiver that is based on Frequency-domain (FD) sampling, a special case of TD sampling. To achieve high dynamic ranges in these receivers, it is critical that the digital post processing block matches the analog RF front end accurately. This accurate matching has to be ensured across several process variations, mismatches and o�sets that can be present in integrated circuit implementations. A unified model has been defined for the FD multi-channel receiver that contains all these imperfections and a joint synchronization and calibration technique, based on the Least-mean-squared (LMS) algorithm, is presented to track them. A maximum likelihood (ML) algorithm is used to estimate the frequency offset in carriers which is corrected prior to LMS calibration. Simulation results are provided to support these concepts. The sampling circuits in FD receivers are based on charge-sampling and a multi-channel charge-sampling receiver creates an inherent sinc filter-bank that has several advantages compared to the conventional analog filter banks used in other multi-channel receivers. It is shown that the sinc filter banks, besides reduced analog complexity, have very low computational complexity in data estimation which greatly reduces the digital power consumption of these filters. The digital complexity of data estimation in the sinc fiter bank is shown to be less than 1=10th of the complexity in analog filter banks
    corecore