891 research outputs found

    Reconfigurable Shift Switching Parallel Comparators

    Get PDF
    We present novel asynchronous VLSI comparator schemes which are based on recently proposed reconfigurable shift switch logic and the traditional (precharged) CMOS domino logic. The schemes always produce a semaphore as a by-product of the process to indicate the end of domino process, which requires no additional delay and a minimal number of additional devices. For a large percentage of inputs the computations are much faster than traditional synchronous comparators due to the full utilization of the inherent speed of the circuits. Also the schemes are simple, area compact and stable

    Low-Power Energy Efficient Circuit Techniques for Small IoT Systems

    Full text link
    Although the improvement in circuit speed has been limited in recent years, there has been increased focus on the internet of things (IoT) as technology scaling has decreased circuit size, power usage and cost. This trend has led to the development of many small sensor systems with affordable costs and diverse functions, offering people convenient connection with and control over their surroundings. This dissertation discusses the major challenges and their solutions in realizing small IoT systems, focusing on non-digital blocks, such as power converters and analog sensing blocks, which have difficulty in following the traditional scaling trends of digital circuits. To accommodate the limited energy storage and harvesting capacity of small IoT systems, this dissertation presents an energy harvester and voltage regulators with low quiescent power and good efficiency in ultra-low power ranges. Switched-capacitor-based converters with wide-range energy-efficient voltage-controlled oscillators assisted by power-efficient self-oscillating voltage doublers and new cascaded converter topologies for more conversion ratio configurability achieve efficient power conversion down to several nanowatts. To further improve the power efficiency of these systems, analog circuits essential to most wireless IoT systems are also discussed and improved. A capacitance-to-digital sensor interface and a clocked comparator design are improved by their digital-like implementation and operation in phase and frequency domain. Thanks to the removal of large passive elements and complex analog blocks, both designs achieve excellent area reduction while maintaining state-of-art energy efficiencies. Finally, a technique for removing dynamic voltage and temperature variations is presented as smaller circuits in advanced technologies are more vulnerable to these variations. A 2-D simultaneous feedback control using an on-chip oven control locks the supply voltage and temperature of a small on-chip domain and protects circuits in this locked domain from external voltage and temperature changes, demonstrating 0.0066 V/V and 0.013 °C/°C sensitivities to external changes. Simple digital implementation of the sensors and most parts of the control loops allows robust operation within wide voltage and temperature ranges.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138743/1/wanyeong_1.pd

    MORA - an architecture and programming model for a resource efficient coarse grained reconfigurable processor

    Get PDF
    This paper presents an architecture and implementation details for MORA, a novel coarse grained reconfigurable processor for accelerating media processing applications. The MORA architecture involves a 2-D array of several such processors, to deliver low cost, high throughput performance in media processing applications. A distinguishing feature of the MORA architecture is the co-design of hardware architecture and low-level programming language throughout the design cycle. The implementation details for the single MORA processor, and benchmark evaluation using a cycle accurate simulator are presented

    High-Performance Bus-Based Architectures - Guest Editorial

    Get PDF
    (First paragrapg) This special issue of VLSI Design presents a collection of seven papers selected out of more than 35 submissions received following the Call for Papers. Each submission was sent to three referees, all of them experts in the area of bus-based architectures. The result is impressive. The papers featured in this Special Issue cover a wide range of topics from sorting to string matching, to load balancing, to simulation, matrix operations, to robotics, to the design of high-performance scalable architectures

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Rail-to-Rail Operational in Low-Power Reconfigurable Analog Circuitry

    Get PDF
    Analog signal processing (ASP) can be used to decrease energy consumption by several orders of magnitude over completely digital applications. Low-power field programmable analog arrays (FPAA) have been previously used by analog designers to decrease energy consumption. Combining ASP with an FPAA, energy consumption of these systems can be further reduced. For ASP to be most functional, it must achieve rail-to-rail operation to maintain a high dynamic range. This work strives to further reduce power consumption in reconfigurable analog circuitry by presenting a novel data converter that utilizes ASP and rail-to-rail operation. Rail-to-Rail operation is achieved in the data converter with the use of an operational amplifier presented in this work. This efficient yet elementary data converter has been fabricated in a 0.5ÎĽ\mum standard CMOS process. Additionally, this work looks deeper into the challenges of students working remotely, how MATLAB can be used to create circuit design tools, and how these developmental tools can be used by circuit design students
    • …
    corecore