391 research outputs found

    Reconfigurable dual band microstrip patch antenna for software defined radio applications

    Get PDF
    In this paper, a reconfigurable microstrip patch antenna with RF pin diode switches is implemented for dual band of 2.4 GHz and 5.6 GHz Software Defined Radio (SDR) applications. For the dual band SDR system, the use of a single antenna with a wide bandwidth to cover both of the bands can be limiting for low power level signal applications due to wideband noise. A reconfigurable nested microstrip patch antenna is designed on a Rogers 5880 RT/DUROID substrate which is fed by a coaxial probe from the back side of the grounded substrate. RF switching circuitry involves four RF pin diodes at each side of the inner patch. The dual bands of 2.4 GHz and 5.6 GHz frequency operation can be simply obtained by switching the PIN diodes on and off. The antenna is well matched and achieves approximately 7 dBi simulated gain at both frequency bands. Simulation results show that the nested patch antenna is suitable for dual band SDR applications

    Frequency reconfigurable patch antenna for 4G LTE applications

    Get PDF
    A compact printed multi-band frequency reconfigurable patch antenna for 4G LTE applications is presented in this paper (50 x 60 x 1.6 mm3). The antenna consists of W-shaped and Inverted-U shaped patch lines connected in a Tree-shape on the front side of the antenna. The back-side of the antenna contains a 90°-tilted T-shaped strip connected with an Inverted-L shaped strip which is shorted with a patch on the front side for increasing the electrical length to cover lower frequency bands. Frequency reconfigurability is achieved by inserting three switches i.e., PIN diodes. The most critical part of this work is the designing of RLC-based DC line circuits for providing the DC biasing to the PIN diodes used as switches and inserting them at optimum locations. This antenna is reconfigurable among eight different 4G LTE frequency bands including 0.9 GHz, 1.4 GHz, 1.5 GHz, 1.6 GHz, 1.7 GHz, 1.8 GHz, 2.6 GHz, 3.5 GHz and WLAN band 2.5 GHz. The antenna exhibits different radiation patterns having a different direction of peak gain at different frequencies and for different switching combinations. The antenna is simulated with CST, and a prototype is fabricated to compare the measured and simulated results with good accuracy

    A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEA reconfigurable wideband and multiband C-Slot patch antenna with dual-patch elements is proposed and studied. It occupies a compact volume of 50 × 50 × 1.57 (3925 mm3), including the ground plane. The antenna can operate in two dual-band modes and a wideband mode from 5 to 7 GHz. Two parallel C-Slots on the patch elements are employed to perturb the surface current paths for excitation of the dual-band and the wideband modes. Two switches, implemented using PIN diodes, are placed on the connecting lines of a simple feed network to the patch elements. Dual-band modes are achieved by switching “ON” either one of the two patch elements, while the wideband mode with an impedance bandwidth of 33.52% is obtained by switching “ON” both patch elements. The frequencies in the dual-band modes can be independently controlled using positions and dimensions of the C-Slots without affecting the wideband mode. The advantage of the proposed antenna is that two dual-band operations and one wideband operation can be achieved using the same dimensions. This overcomes the need for increasing the surface area normally incurred when designing wideband patch antennas. Simulation results are validated experimentally through prototypes. The measured radiation patterns and peak gains show stable responses and are in good agreements. Coupling between the two patch elements plays a major role for achieving the wide bandwidth and the effects of mutual coupling between the patch elements are also studied

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results

    Reconfigurable and multi-functional antennas

    Get PDF
    This thesis describes a research into multi-frequency and filtering antennas. Several novel antennas are presented, each of which addresses a specific issue for future communication systems, in terms of multi-frequency operation, and filtering capability. These antennas seem to be good candidates for implementation in future multiband radios, cognitive radio (CR), and software defined radio (SDR). The filtering antenna provides an additional filtering action which greatly improves the noise performance and reduces the need for filtering circuitry in the RF front end. Two types of frequency reconfigurable antennas are presented. One is tunable left-handed loop over ground plane and the second is slot-fed reconfigurable patch. The operating frequency of the left handed loop is reconfigured by loading varactor diodes whilst the frequency agility in the patch is achieved by inserting switches in the coupling slot. The length of the slot is altered by activating the switches. Compact microstrip antennas with filtering capabilities are presented in this thesis. Two filtering antennas are presented. Whilst the first one consists of three edge-coupled patches, the second filtering antenna consists of rectangular patch coupled to two hairpin resonators. The proposed antennas combine radiating and filtering functions by providing good out of band gain suppression

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    Design and Analysis of Microstrip Filtennas

    Get PDF
    The Goal of this thesis is to design and analyses the filtenna, also called by name filtering antenna. Designed by integration of the filter and antenna. In modern day wireless devices multiple antennas are required to make sure that it can be used for multiple communication services, this not only make the system bulky but the power loss is also more. In filtenna using active components can replace them making a system with low profile, more light weight, and energy efficient characteristics. In this thesis includes the first part which is an introduction to computational electromagnetics and using this analysis of microstrip antenna and second is the proposed design of two microstrip filtennas. Under computation electromagnetics, the Maxwell equation and antenna parameter are analyzed using finite difference method. The design and simulation of this filtenna have been done in ANSYS-HFSS-15 simulation tool. The first filtenna designed structure is the integration of the band-rejection filter with monopole antenna for UWB and X-Band applications. Where after applying the open stub it only passes the X-Band i.e. 8-12 GHz. The second proposed filtenna is for overlay cognitive radio application. This is design using the bandpass filter which is integrated with the antenna. In bandpass filter, the frequency tuning is done by varactor diode. This filtenna resonates at frequency 2.6 to 3 GHz and gain of 2.7dB. The fabrication of second filtenna using bandpass characteristics is done and analyzed the results

    A reconfigurable H-shape antenna for wireless applications

    Get PDF
    The official published version of this article can be obtained from the link below - Copyright @ EuCAP2010This paper presents a novel H-Shaped reconfigurable microstrip patch antenna fed by a Grounded Coplanar Waveguide (GCPW) for wireless applications. The uniqueness in the presented antenna design relies in the ability to select the number of operating frequencies electronically by using a varactor diode. The antenna structure consists of coplanar waveguide (CPW) input with an H-shape printed on a PCB and a varactor diode for reconfigurability. By electronically varying the value of the diode capacitance, the antenna can operate in a single band mode to cover Global Position System (GPS), a dual band mode to cover GPS and Global System for Mobile communications (GSM1900) or a three-band mode to cover GPS, GSM1900 and Bluetooth or Wireless Local Area Networks (WLAN)
    corecore