16 research outputs found

    New artificial neural network design for Chua chaotic system prediction using FPGA hardware co-simulation

    Get PDF
    This study aims to design a new architecture of the artificial neural networks (ANNs) using the Xilinx system generator (XSG) and its hardware co-simulation equivalent model using field programmable gate array (FPGA) to predict the behavior of Chua’s chaotic system and use it in hiding information. The work proposed consists of two main sections. In the first section, MATLAB R2016a was used to build a 3×4×3 feed forward neural network (FFNN). The training results demonstrate that FFNN training in the Bayesian regulation algorithm is sufficiently accurate to directly implement. The second section demonstrates the hardware implementation of the network with the XSG on the Xilinx artix7 xc7a100t-1csg324 chip. Finally, the message was first encrypted using a dynamic Chua system and then decrypted using ANN’s chaotic dynamics. ANN models were developed to implement hardware in the FPGA system using the IEEE 754 Single precision floating-point format. The ANN design method illustrated can be extended to other chaotic systems in general

    COMPARISON OF MEMRISTOR MODELS FOR MICROWAVE CIRCUIT SIMULATIONS IN TIME AND FREQUENCY DOMAIN

    Get PDF
    As reported in the open literature, there are many memristor models for the circuit-level simulations. Some of them are not particularly suitable for microwave circuit simulations. At RF/microwave frequencies, the memristor dynamics become an important issue for the transition process. In this paper we present a number of different SPICE memristor model groups. Each group is explained using representative models, which are analysed and compared from the microwave circuit analysis viewpoint. We consider the model behaviour at RF/microwave frequencies and the memristance setting issues. Results are compared and the best models are recommended

    Constraint satisfaction modules : a methodology for analog circuit design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 119-122).This dissertation describes a methodology for solving convex constraint problems using analog circuits. It demonstrates how this methodology can be used to design circuits that solve function-fitting problems through iterated gradient descent. In particular, it shows how to build a small circuit that can model a nonlinearity by observation, and predistort to compensate for this nonlinearity. The system fits into a broader effort to investigate non-traditional approaches to circuit design. First, it breaks the traditional input-output abstraction barrier; all ports are bidirectional. Second, it uses a different methodology for proving system stability with local rather than global properties. Such stability arguments can be scaled to much more complex systems than traditional stability criteria.by Piotr Mitros.Ph.D

    Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits

    Get PDF
    The existence of the memristor, as a fourth fundamental circuit element, by researchers at Hewlett Packard (HP) labs in 2008, has attracted much interest since then. This occurs because the memristor opens up new functionalities in electronics and it has led to the interpretation of phenomena not only in electronic devices but also in biological systems. Furthermore, many research teams work on projects, which use memristors in neuromorphic devices to simulate learning, adaptive and spontaneous behavior while other teams on systems, which attempt to simulate the behavior of biological synapses. In this paper, the latest achievements and applications of this newly development circuit element are presented. Also, the basic features of neuromorphic circuits, in which the memristor can be used as an electrical synapse, are studied. In this direction, a flux-controlled memristor model is adopted for using as a coupling element between coupled electronic circuits, which simulate the behavior of neuron-cells. For this reason, the circuits which are chosen realize the systems of differential equations that simulate the well-known Hindmarsh-Rose and FitzHugh-Nagumo neuron models. Finally, the simulation results of the use of a memristor as an electric synapse present the effectiveness of the proposed method and many interesting dynamic phenomena concerning the behavior of coupled neuron-cells

    The missing applications found: Robust design techniques and novel uses of memristors

    Get PDF
    Resistive memory, also known as memristor, is an emerging potential successor to traditional CMOS charge based memories. Memristors have also recently been proposed as a promising candidate for several additional applications such as logic design, sensing, non-volatile storage, neuromorphic computing, Physically Unclonable Functions (PUFs), Content­addressable memory (CAM) and reconfigurable computing. In this paper, we explore three unique applications of memris­tor technology based implementations, specifically from the perspective of sensing, logic, in-memory computing and their solutions. We review solar cell health monitoring and diagnosis, describe the proposed solutions, and provide directions in memristive gas sensing and in-memory computing. For the gas sensor application, in order to determine the number of memristors to ensure a certain level of accuracy in sen­sitivity, a technique to optimize the sensor array based on an acceptable sensitivity variation and minimum sensitivity margin is presented. These "out-of-the-box" emerging ideas for applications of memristive devices in enhancing robustness and, at the same time, how the requirements of robust design are enabling unconventional use of the devices. To this end, the papers considers some examples of this mutual interaction

    Low Power IoT based Automated Manhole Cover Monitoring System as a Smart City application

    Get PDF
    With the increased population in the big cities, Internet of Things (IoT) devices to be used as automated monitoring systems are required in many of the Smart city’s applications. Monitoring road infrastructure such as a manhole cover (MC) is one of these applications. Automating monitoring manhole cover structure has become more demanding, especially when the number of MC failure increases rapidly: it affects the safety, security and the economy of the society. Only 30% of the current MC monitoring systems are automated with short lifetime in comparison to the lifetime of the MC, without monitoring all the MC issues and without discussing the challenges of the design from IoT device design point of view. Extending the lifetime of a fully automated IoT-based MC monitoring system from circuit design point of view was studied and addressed in this research. The main circuit that consumes more power in the IoT-based MC monitoring system is the analogue to digital converter (ADC) found at the data acquisition module (DAQ). In several applications, the compressive sensing (CS) technique proved its capability to reduce the power consumption for ADC. In this research, CS has been investigated and studied deeply to reach the aim of the research. CS based ADC is named analogue to information converter (AIC). Because the heart of the AIC is the pseudorandom number generator (PRNG), several researchers have used it as a key to secure the data, which makes AIC more suitable for IoT device design. Most of these PRNG designs for AIC are hardware implemented in the digital circuit design. The presence of digital PRNG at the AIC analogue front end requires: a) isolating digital and analogue parts, and b) using two different power supplies and grounds for analogue and digital parts. On the other hand, analogue circuit design becomes more demanding for the sake of the power consumption, especially after merging the analogue circuit design with other fields such as neural networks and neuroscience. This has motivated the researcher to propose two low-power analogue chaotic oscillators to replace digital PRNG using opamp Schmitt Trigger. The proposed systems are based on a coupling oscillator concept. The design of the proposed systems is based on: First, two new modifications for the well-known astable multivibrator using opamp Schmitt trigger. Second, the waveshaping design technique is presented to design analogue chaotic oscillators instead of starting with complex differential equations as it is the case for most of the chaotic oscillator designs. This technique helps to find easy steps and understanding of building analogue chaotic oscillators for electronic circuit designers. The proposed systems used off the shelf components as a proof of concept. The proposed systems were validated based on: a) the range of the temperature found beneath a manhole cover, and b) the signal reconstruction under the presence and the absence of noise. The results show decent performance of the proposed system from the power consumption point of view, as it can exceed the lifetime of similar two opamps based Jerk chaotic oscillators by almost one year for long lifetime applications such as monitoring MC using Li-Ion battery. Furthermore, in comparison to PRNG output sequence generated by a software algorithm used in AIC framework in the presence of the noise, the first proposed system output sequence improved the signal reconstruction by 6.94%, while the second system improved the signal reconstruction by 17.83

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM
    corecore