415 research outputs found

    Trusted resource allocation in volunteer edge-cloud computing for scientific applications

    Get PDF
    Data-intensive science applications in fields such as e.g., bioinformatics, health sciences, and material discovery are becoming increasingly dynamic and demanding with resource requirements. Researchers using these applications which are based on advanced scientific workflows frequently require a diverse set of resources that are often not available within private servers or a single Cloud Service Provider (CSP). For example, a user working with Precision Medicine applications would prefer only those CSPs who follow guidelines from HIPAA (Health Insurance Portability and Accountability Act) for implementing their data services and might want services from other CSPs for economic viability. With the generation of more and more data these workflows often require deployment and dynamic scaling of multi-cloud resources in an efficient and high-performance manner (e.g., quick setup, reduced computation time, and increased application throughput). At the same time, users seek to minimize the costs of configuring the related multi-cloud resources. While performance and cost are among the key factors to decide upon CSP resource selection, the scientific workflows often process proprietary/confidential data that introduces additional constraints of security postures. Thus, users have to make an informed decision on the selection of resources that are most suited for their applications while trading off between the key factors of resource selection which are performance, agility, cost, and security (PACS). Furthermore, even with the most efficient resource allocation across multi-cloud, the cost to solution might not be economical for all users which have led to the development of new paradigms of computing such as volunteer computing where users utilize volunteered cyber resources to meet their computing requirements. For economical and readily available resources, it is essential that such volunteered resources can integrate well with cloud resources for providing the most efficient computing infrastructure for users. In this dissertation, individual stages such as user requirement collection, user's resource preferences, resource brokering and task scheduling, in lifecycle of resource brokering for users are tackled. For collection of user requirements, a novel approach through an iterative design interface is proposed. In addition, fuzzy interference-based approach is proposed to capture users' biases and expertise for guiding their resource selection for their applications. The results showed improvement in performance i.e. time to execute in 98 percent of the studied applications. The data collected on user's requirements and preferences is later used by optimizer engine and machine learning algorithms for resource brokering. For resource brokering, a new integer linear programming based solution (OnTimeURB) is proposed which creates multi-cloud template solutions for resource allocation while also optimizing performance, agility, cost, and security. The solution was further improved by the addition of a machine learning model based on naive bayes classifier which captures the true QoS of cloud resources for guiding template solution creation. The proposed solution was able to improve the time to execute for as much as 96 percent of the largest applications. As discussed above, to fulfill necessity of economical computing resources, a new paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which reduces cost and improves performance and security by creating edge clusters comprising of volunteered computing resources close to users. The initial results have shown improved time of execution for application workflows against state-of-the-art solutions while utilizing only the most secure VEC resources. Consequently, we have utilized reinforcement learning based solutions to characterize volunteered resources for their availability and flexibility towards implementation of security policies. The characterization of volunteered resources facilitates efficient allocation of resources and scheduling of workflows tasks which improves performance and throughput of workflow executions. VEC architecture is further validated with state-of-the-art bioinformatics workflows and manufacturing workflows.Includes bibliographical references

    CHANGE-READY MPC SYSTEMS AND PROGRESSIVE MODELING: VISION, PRINCIPLES, AND APPLICATIONS

    Get PDF
    The last couple of decades have witnessed a level of fast-paced development of new ideas, products, manufacturing technologies, manufacturing practices, customer expectations, knowledge transition, and civilization movements, as it has never before. In today\u27s manufacturing world, change became an intrinsic characteristic that is addressed everywhere. How to deal with change, how to manage it, how to bind to it, how to steer it, and how to create a value out of it, were the key drivers that brought this research to existence. Change-Ready Manufacturing Planning and Control (CMPC) systems are presented as the first answer. CMPC characteristics, change drivers, and some principles of Component-Based Software Engineering (CBSE) are interwoven to present a blueprint of a new framework and mind-set in the manufacturing planning and control field, CMPC systems. In order to step further and make the internals of CMPC systems/components change-ready, an enabling modeling approach was needed. Progressive Modeling (PM), a forward-looking multi-disciplinary modeling approach, is developed in order to modernize the modeling process of today\u27s complex industrial problems and create pragmatic solutions for them. It is designed to be pragmatic, highly sophisticated, and revolves around many seminal principles that either innovated or imported from many disciplines: Systems Analysis and Design, Software Engineering, Advanced Optimization Algorisms, Business Concepts, Manufacturing Strategies, Operations Management, and others. Problems are systemized, analyzed, componentized; their logic and their solution approaches are redefined to make them progressive (ready to change, adapt, and develop further). Many innovations have been developed in order to enrich the modeling process and make it a well-assorted toolkit able to address today\u27s tougher, larger, and more complex industrial problems. PM brings so many novel gadgets in its toolbox: function templates, advanced notation, cascaded mathematical models, mathematical statements, society of decision structures, couplers--just to name a few. In this research, PM has been applied to three different applications: a couple of variants of Aggregate Production Planning (APP) Problem and the novel Reconfiguration and Operations Planning (ROP) problem. The latest is pioneering in both the Reconfigurable Manufacturing and the Operations Management fields. All the developed models, algorithms, and results reveal that the new analytical and computational power gained by PM development and demonstrate its ability to create a new generation of unmatched large scale and scope system problems and their integrated solutions. PM has the potential to be instrumental toolkit in the development of Reconfigurable Manufacturing Systems. In terms of other potential applications domain, PM is about to spark a new paradigm in addressing large-scale system problems of many engineering and scientific fields in a highly pragmatic way without losing the scientific rigor

    Adaptation strategies for self-organising electronic institutions

    No full text
    For large-scale systems and networks embedded in highly dynamic, volatile, and unpredictable environments, self-adaptive and self-organising (SASO) algorithms have been proposed as solutions to the problems introduced by this dynamism, volatility, and unpredictability. In open systems it cannot be guaranteed that an adaptive mechanism that works well in isolation will work well — or at all — in combination with others. In complexity science the emergence of systemic, or macro-level, properties from individual, or micro-level, interactions is addressed through mathematical modelling and simulation. Intermediate meso-level structuration has been proposed as a method for controlling the macro-level system outcomes, through the study of how the application of certain policies, or norms, can affect adaptation and organisation at various levels of the system. In this context, this thesis describes the specification and implementation of an adaptive affective anticipatory agent model for the individual micro level, and a self-organising distributed institutional consensus algorithm for the group meso level. Situated in an intelligent transportation system, the agent model represents an adaptive decision-making system for safe driving, and the consensus algorithm allows the vehicles to self-organise agreement on values necessary for the maintenance of “platoons” of vehicles travelling down a motorway. Experiments were performed using each mechanism in isolation to demonstrate its effectiveness. A computational testbed has been built on a multi-agent simulator to examine the interaction between the two given adaptation mechanisms. Experiments involving various differing combinations of the mechanisms are performed, and the effect of these combinations on the macro-level system properties is measured. Both beneficial and pernicious interactions are observed; the experimental results are analysed in an attempt to understand these interactions. The analysis is performed through a formalism which enables the causes for the various interactions to be understood. The formalism takes into account the methods by which the SASO mechanisms are composed, at what level of the system they operate, on which parts of the system they operate, and how they interact with the population of the system. It is suggested that this formalism could serve as the starting point for an analytic method and experimental tools for a future systems theory of adaptation.Open Acces

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Adaptive Computing Systems for Aerospace

    Get PDF
    RÉSUMÉ En raison de leur complexitĂ© croissante, les systĂšmes informatiques modernes nĂ©cessitent de nouvelles mĂ©thodologies permettant d’automatiser leur conception et d’amĂ©liorer leurs performances. L’espace, en particulier, constitue un environnement trĂšs dĂ©favorable au maintien de la performance de ces systĂšmes : sans protection des rayonnements ionisants et des particules, l’électronique basĂ©e sur CMOS peut subir des erreurs transitoires, une dĂ©gradation des performances et une usure accĂ©lĂ©rĂ©e causant ultimement une dĂ©faillance du systĂšme. Les approches traditionnellement adoptees pour garantir la fiabilitĂ© du systĂšme et prolonger sa durĂ©e de vie sont basĂ©es sur la redondance, gĂ©nĂ©ralement Ă©tablie durant la conception. En revanche, ces solutions sont coĂ»teuses et parfois inefficaces, puisqu'elles augmentent la taille et la complexitĂ© du systĂšme, l'exposant Ă  des risques plus Ă©levĂ©s de surchauffe et d'erreurs. Les consĂ©quences de ces limites sont d'autant plus importantes lorsqu'elles s’appliquent aux systĂšmes critiques (e.g., contraintes par le temps ou dont l’accĂšs est limitĂ©) qui doivent ĂȘtre en mesure de prendre des dĂ©cisions sans intervention humaine. Sur la base de ces besoins et limites, le dĂ©veloppement en aĂ©rospatial de systĂšmes informatiques avec capacitĂ©s adaptatives peut ĂȘtre considĂ©rĂ© comme la solution la plus appropriĂ©e pour les dispositifs intĂ©grĂ©s Ă  haute performance. L’informatique auto-adaptative offre un potentiel sans Ă©gal pour assurer la crĂ©ation d’une gĂ©nĂ©ration d’ordinateurs plus intelligents et fiables. Qui plus est, elle rĂ©pond aux besoins modernes de concevoir et programmer des systĂšmes informatiques capables de rĂ©pondre Ă  des objectifs en conflit. En nous inspirant des domaines de l’intelligence artificielle et des systĂšmes reconfigurables, nous aspirons Ă  dĂ©velopper des systĂšmes informatiques auto-adaptatifs pour l’aĂ©rospatiale qui rĂ©pondent aux enjeux et besoins actuels. Notre objectif est d’amĂ©liorer l’efficacitĂ© de ces systĂšmes, leur tolerance aux pannes et leur capacitĂ© de calcul. Afin d’atteindre cet objectif, une analyse expĂ©rimentale et comparative des algorithmes les plus populaires pour l’exploration multi-objectifs de l’espace de conception est d’abord effectuĂ©e. Les algorithmes ont Ă©tĂ© recueillis suite Ă  une revue de la plus rĂ©cente littĂ©rature et comprennent des mĂ©thodes heuristiques, Ă©volutives et statistiques. L’analyse et la comparaison de ceux-ci permettent de cerner les forces et limites de chacun et d'ainsi dĂ©finir des lignes directrices favorisant un choix optimal d’algorithmes d’exploration. Pour la crĂ©ation d’un systĂšme d’optimisation autonome—permettant le compromis entre plusieurs objectifs—nous exploitons les capacitĂ©s des modĂšles graphiques probabilistes. Nous introduisons une mĂ©thodologie basĂ©e sur les modĂšles de Markov cachĂ©s dynamiques, laquelle permet d’équilibrer la disponibilitĂ© et la durĂ©e de vie d’un systĂšme multiprocesseur. Ceci est obtenu en estimant l'occurrence des erreurs permanentes parmi les erreurs transitoires et en migrant dynamiquement le calcul sur les ressources supplĂ©mentaires en cas de dĂ©faillance. La nature dynamique du modĂšle rend celui-ci adaptable Ă  diffĂ©rents profils de mission et taux d’erreur. Les rĂ©sultats montrent que nous sommes en mesure de prolonger la durĂ©e de vie du systĂšme tout en conservant une disponibilitĂ© proche du cas idĂ©al. En raison des contraintes de temps rigoureuses imposĂ©es par les systĂšmes aĂ©rospatiaux, nous Ă©tudions aussi l’optimisation de la tolĂ©rance aux pannes en prĂ©sence d'exigences d’exĂ©cution en temps rĂ©el. Nous proposons une mĂ©thodologie pour amĂ©liorer la fiabilitĂ© du calcul en prĂ©sence d’erreurs transitoires pour les tĂąches en temps rĂ©el d’un systĂšme multiprocesseur homogĂšne avec des capacitĂ©s de rĂ©glage de tension et de frĂ©quence. Dans ce cadre, nous dĂ©finissons un nouveau compromis probabiliste entre la consommation d’énergie et la tolĂ©rance aux erreurs. Comme nous reconnaissons que la rĂ©silience est une propriĂ©tĂ© d’intĂ©rĂȘt omniprĂ©sente (par exemple, pour la conception et l’analyse de systems complexes gĂ©nĂ©riques), nous adaptons une dĂ©finition formelle de celle-ci Ă  un cadre probabiliste dĂ©rivĂ© Ă  nouveau de modĂšles de Markov cachĂ©s. Ce cadre nous permet de modĂ©liser de façon rĂ©aliste l’évolution stochastique et l’observabilitĂ© partielle des phĂ©nomĂšnes du monde rĂ©el. Nous proposons un algorithme permettant le calcul exact efficace de l’étape essentielle d’infĂ©rence laquelle est requise pour vĂ©rifier des propriĂ©tĂ©s gĂ©nĂ©riques. Pour dĂ©montrer la flexibilitĂ© de cette approche, nous la validons, entre autres, dans le contexte d’un systĂšme informatisĂ© reconfigurable pour l’aĂ©rospatiale. Enfin, nous Ă©tendons la portĂ©e de nos recherches vers la robotique et les systĂšmes multi-agents, deux sujets dont la popularitĂ© est croissante en exploration spatiale. Nous abordons le problĂšme de l’évaluation et de l’entretien de la connectivitĂ© dans le context distribuĂ© et auto-adaptatif de la robotique en essaim. Nous examinons les limites des solutions existantes et proposons une nouvelle mĂ©thodologie pour crĂ©er des gĂ©omĂ©tries complexes connectĂ©es gĂ©rant plusieurs tĂąches simultanĂ©ment. Des contributions additionnelles dans plusieurs domaines sont rĂ©sumĂ©s dans les annexes, nommĂ©ment : (i) la conception de CubeSats, (ii) la modĂ©lisation des rayonnements spatiaux pour l’injection d’erreur dans FPGA et (iii) l’analyse temporelle probabiliste pour les systĂšmes en temps rĂ©el. À notre avis, cette recherche constitue un tremplin utile vers la crĂ©ation d’une nouvelle gĂ©nĂ©ration de systĂšmes informatiques qui exĂ©cutent leurs tĂąches d’une façon autonome et fiable, favorisant une exploration spatiale plus simple et moins coĂ»teuse.----------ABSTRACT Today's computer systems are growing more and more complex at a pace that requires the development of novel and more effective methodologies to automate their design. Space, in particular, represents a challenging environment: without protection from ionizing and particle radiation, CMOS-based electronics are subject to transients faults, performance degradation, accelerated wear, and, ultimately, system failure. Traditional approaches adopted to guarantee reliability and extended lifetime are based on redundancy that is established at design-time. These solutions are expensive and sometimes inefficient, as they increase the complexity and size of a system, exposing it to higher risks of overheating and incurring in radiation-induced errors. Moreover, critical systems---e.g., time-constrained ones and those where access is limited---must be able to cope with pivotal situations without relying on human intervention. Hence, the emerging interest in computer systems with adaptive capabilities as the most suitable solution for novel high-performance embedded devices for aerospace. Self-adaptive computing carries unmatched potential and great promises for the creation of a new generation of smart, more reliable computers, and it addresses the challenge of designing and programming modern and future computer systems that must meet conflicting goals. Drawing from the fields of artificial intelligence and reconfigurable systems, we aim at developing self-adaptive computer systems for aerospace. Our goal is to improve their efficiency, fault-tolerance, and computational capabilities. The first step in this research is the experimental analysis of the most popular multi-objective design-space exploration algorithms for high-level design. These algorithms were collected from the recent literature and include heuristic, evolutionary, and statistical methods. Their comparison provides insights that we use to define guidelines for the choice of the most appropriate optimization algorithms, given the features of the design space. For the creation of a self-managing optimization framework---enabling the adaptive trade-off of multiple objectives---we leverage the tools of probabilistic graphical models. We introduce a mechanism based on dynamic hidden Markov models that balances the availability and lifetime of multiprocessor systems. This is achieved by estimating the occurrence of permanent faults amid transient faults, and by dynamically migrating the computation on excess resources, when failure occurs. The dynamic nature of the model makes it adjustable to different mission profiles and fault rates. The results show that we are able to lead systems to extended lifetimes, while keeping their availability close to ideal. On account of the stringent timing constraints imposed by aerospace systems, we then investigate the optimization of fault-tolerance under real-time requirements. We propose a methodology to improve the reliability of computation in the presence of transient errors when considering the mapping of real-time tasks on a homogeneous multiprocessor system with voltage and frequency scaling capabilities. In this framework, we take advantage of probability theory to define a novel trade-off between power consumption and fault-tolerance. As we recognize that resilience is a pervasive property of interest (e.g., for the design and analysis of generic complex systems), we adapt a formal definition of it to one more probabilistic framework derived from hidden Markov models. This allows us to realistically model the stochastic evolution and partial observability of complex real-world environments. Within this framework, we propose an efficient algorithm for the exact computation of the essential inference step required to construct generic property checking. To demonstrate the flexibility of this approach, we validate it in the context, among others, of a self-aware, reconfigurable computing system for aerospace. Finally, we move the scope of our research towards robotics and multi-agent systems: a topic of thriving popularity for space exploration. We tackle the problem of connectivity assessment and maintenance in the distributed and self-adaptive context of swarm robotics. We review the limitations of existing solutions and propose a novel methodology to create connected complex geometries for multiple task coverage. Additional contributions in the areas of (i) CubeSat design, (ii) the modelling of space radiation for FPGA fault-injection, and (iii) probabilistic timing analysis for real-time systems are summarized in the appendices. In the author's opinion, this research provides a number of useful stepping stones for the creation of a new generation of computing systems that autonomously---and reliably---perform their tasks for longer periods of time, fostering simpler and cheaper space exploration

    Design and Management of Manufacturing Systems

    Get PDF
    Although the design and management of manufacturing systems have been explored in the literature for many years now, they still remain topical problems in the current scientific research. The changing market trends, globalization, the constant pressure to reduce production costs, and technical and technological progress make it necessary to search for new manufacturing methods and ways of organizing them, and to modify manufacturing system design paradigms. This book presents current research in different areas connected with the design and management of manufacturing systems and covers such subject areas as: methods supporting the design of manufacturing systems, methods of improving maintenance processes in companies, the design and improvement of manufacturing processes, the control of production processes in modern manufacturing systems production methods and techniques used in modern manufacturing systems and environmental aspects of production and their impact on the design and management of manufacturing systems. The wide range of research findings reported in this book confirms that the design of manufacturing systems is a complex problem and that the achievement of goals set for modern manufacturing systems requires interdisciplinary knowledge and the simultaneous design of the product, process and system, as well as the knowledge of modern manufacturing and organizational methods and techniques

    Predicting potential customer needs and wants for agile design and manufacture in an industry 4.0 environment

    Get PDF
    Manufacturing is currently experiencing a paradigm shift in the way that products are designed, produced and serviced. Such changes are brought about mainly by the extensive use of the Internet and digital technologies. As a result of this shift, a new industrial revolution is emerging, termed “Industry 4.0” (i4), which promises to accommodate mass customisation at a mass production cost. For i4 to become a reality, however, multiple challenges need to be addressed, highlighting the need for design for agile manufacturing and, for this, a framework capable of integrating big data analytics arising from the service end, business informatics through the manufacturing process, and artificial intelligence (AI) for the entire manufacturing value chain. This thesis attempts to address these issues, with a focus on the need for design for agile manufacturing. First, the state of the art in this field of research is reviewed on combining cutting-edge technologies in digital manufacturing with big data analysed to support agile manufacturing. Then, the work is focused on developing an AI-based framework to address one of the customisation issues in smart design and agile manufacturing, that is, prediction of potential customer needs and wants. With this framework, an AI-based approach is developed to predict design attributes that would help manufacturers to decide the best virtual designs to meet emerging customer needs and wants predictively. In particular, various machine learning approaches are developed to help explain at least 85% of the design variance when building a model to predict potential customer needs and wants. These approaches include k-means clustering, self-organizing maps, fuzzy k-means clustering, and decision trees, all supporting a vector machine to evaluate and extract conscious and subconscious customer needs and wants. A model capable of accurately predicting customer needs and wants for at least 85% of classified design attributes is thus obtained. Further, an analysis capable of determining the best design attributes and features for predicting customer needs and wants is also achieved. As the information analysed can be utilized to advise the selection of desired attributes, it is fed back in a closed-loop of the manufacturing value chain: design → manufacture → management/service → → → design... For this, a total of 4 case studies are undertaken to test and demonstrate the efficacy and effectiveness of the framework developed. These case studies include: 1) an evaluation model of consumer cars with multiple attributes including categorical and numerical ones; 2) specifications of automotive vehicles in terms of various characteristics including categorical and numerical instances; 3) fuel consumptions of various car models and makes, taking into account a desire for low fuel costs and low CO2 emissions; and 4) computer parts design for recommending the best design attributes when buying a computer. The results show that the decision trees, as a machine learning approach, work best in predicting customer needs and wants for smart design. With the tested framework and methodology, this thesis overall presents a holistic attempt to addressing the missing gap between manufacture and customisation, that is meeting customer needs and wants. Effective ways of achieving customization for i4 and smart manufacturing are identified. This is achieved through predicting potential customer needs and wants and applying the prediction at the product design stage for agile manufacturing to meet individual requirements at a mass production cost. Such agility is one key element in realising Industry 4.0. At the end, this thesis contributes to improving the process of analysing the data to predict potential customer needs and wants to be used as inputs to customizing product designs agilely
    • 

    corecore