529 research outputs found

    Cloud-based platform for intelligent healthcare monitoring and risk prevention in hazardous manufacturing contexts

    Get PDF
    This paper presents an intelligent cloud-based platform for workers healthcare monitoring and risk prevention in potentially hazardous manufacturing contexts. The platform is structured according to sequential modules dedicated to data acquisition, processing and decision-making support. Several sensors and data sources, including smart wearables, machine tool embedded sensors and environmental sensors, are employed for data collection, comprising information on offline clinical background, operational and environmental data. The cloud data processing module is responsible for extracting relevant features from the acquired data in order to feed a machine learning-based decision-making support system. The latter provides a classification of workers’ health status so that a prompt intervention can be performed in particularly challenging scenarios

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing

    Full text link
    [EN] Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.Prince Sultan University, Riyadh Saudi Arabia, (SEED-CCIS-2021{85}) under Artificial Intelligence & Data Analytics Research Lab. CCIS.Rehman, A.; Saba, T.; Haseeb, K.; Marie-Sainte, SL.; Lloret, J. (2021). Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies. 14(19):1-15. https://doi.org/10.3390/en14196414S115141

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Design and Development of Smart Brain-Machine-Brain Interface (SBMIBI) for Deep Brain Stimulation and Other Biomedical Applications

    Get PDF
    Machine collaboration with the biological body/brain by sending electrical information back and forth is one of the leading research areas in neuro-engineering during the twenty-first century. Hence, Brain-Machine-Brain Interface (BMBI) is a powerful tool for achieving such machine-brain/body collaboration. BMBI generally is a smart device (usually invasive) that can record, store, and analyze neural activities, and generate corresponding responses in the form of electrical pulses to stimulate specific brain regions. The Smart Brain-Machine-Brain-Interface (SBMBI) is a step forward with compared to the traditional BMBI by including smart functions, such as in-electrode local computing capabilities, and availability of cloud connectivity in the system to take the advantage of powerful cloud computation in decision making. In this dissertation work, we designed and developed an innovative form of Smart Brain-Machine-Brain Interface (SBMBI) and studied its feasibility in different biomedical applications. With respect to power management, the SBMBI is a semi-passive platform. The communication module is fully passive—powered by RF harvested energy; whereas, the signal processing core is battery-assisted. The efficiency of the implemented RF energy harvester was measured to be 0.005%. One of potential applications of SBMBI is to configure a Smart Deep-Brain-Stimulator (SDBS) based on the general SBMBI platform. The SDBS consists of brain-implantable smart electrodes and a wireless-connected external controller. The SDBS electrodes operate as completely autonomous electronic implants that are capable of sensing and recording neural activities in real time, performing local processing, and generating arbitrary waveforms for neuro-stimulation. A bidirectional, secure, fully-passive wireless communication backbone was designed and integrated into this smart electrode to maintain contact between the smart electrodes and the controller. The standard EPC-Global protocol has been modified and adopted as the communication protocol in this design. The proposed SDBS, by using a SBMBI platform, was demonstrated and tested through a hardware prototype. Additionally the SBMBI was employed to develop a low-power wireless ECG data acquisition device. This device captures cardiac pulses through a non-invasive magnetic resonance electrode, processes the signal and sends it to the backend computer through the SBMBI interface. Analysis was performed to verify the integrity of received ECG data

    A Multifunctional Integrated Circuit Router for Body Area Network Wearable Systems

    Get PDF
    A multifunctional router IC to be included in the nodes of a wearable body sensor network is described and evaluated. The router targets different application scenarios, especially those including tens of sensors, embedded into textile materials and with high data-rate communication demands. The router IC supports two different functionality sets, one for sensor nodes and another for the base node, both based on the same circuit module. The nodes are connected to each other by means of woven thick conductive yarns forming a mesh topology with the base node at the center. From the standpoint of the network, each sensor node is a four port router capable of handling packets from destination nodes to the base node, with sufficient redundant paths. The adopted hybrid circuit and packet switching scheme significantly improve network performance in terms of end-to-end delay, throughput and power consumption. The IC also implements a highly precise, sub-microsecond one-way time synchronization protocol which is used for time stamping the acquired data. The communication module was implemented in a 4-metal, 0.35 μm CMOS technology. The maximum data rate of the system is 35 Mbps while supporting up to 250 sensors, which exceeds current BAN applications scenarios.This work was supported in part by the Fundação para a Ciéncia e a Tecnologia (FCT) (Portuguese Foundation for Science and Technology) under Project PROLIMB PTDC/EEAELC/103683/2008 and through the Ph.D. Grant SFRH/BD/75324/2010, and in part by the CREaTION, FCT/MEC through national funds and co-funded by the FEDER-PT2020 partnership agreement under Project UIDB/EEA/50008/2020, Project CONQUEST (CMU/ECE/030/2017), Project COST CA15104, and ORCIP. (Corresponding author: Fardin Derogarian Miyandoab.)info:eu-repo/semantics/publishedVersio

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    Get PDF
    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform’s performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis
    corecore