9,142 research outputs found

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    Reconfigurable Antennas in mmWave MIMO Systems

    Full text link
    The key obstacle to achieving the full potential of the millimeter wave (mmWave) band has been the poor propagation characteristics of wireless signals in this band. One approach to overcome this issue is to use antennas that can support higher gains while providing beam adaptability and diversity, i.e., reconfigurable antennas. In this article, we present a new architecture for mmWave multiple-input multiple-output (MIMO) communications that uses a new class of reconfigurable antennas. More specifically, the proposed lens-based antennas can support multiple radiation patterns while using a single radio frequency chain. Moreover, by using a beam selection network, each antenna beam can be steered in the desired direction. Further, using the proposed reconfigurable antenna in a MIMO architecture, we propose a new signal processing algorithm that uses the additional degrees of freedom provided by the antennas to overcome propagation issues at mmWave frequencies. Our simulation results show that the proposed reconfigurable antenna MIMO architecture significantly enhances the performance of mmWave communication systems

    A Reconfigurable Tile-Based Architecture to Compute FFT and FIR Functions in the Context of Software-Defined Radio

    Get PDF
    Software-defined radio (SDR) is the term used for flexible radio systems that can deal with multiple standards. For an efficient implementation, such systems require appropriate reconfigurable architectures. This paper targets the efficient implementation of the most computationally intensive kernels of two significantly different standards, viz. Bluetooth and HiperLAN/2, on the same reconfigurable hardware. These kernels are FIR filtering and FFT. The designed architecture is based on a two-dimensional arrangement of 17 tiles. Each tile contains a multiplier, an adder, local memory and multiplexers allowing flexible communication with the neighboring tiles. The tile-base data path is complemented with a global controller and various memories. The design has been implemented in SystemC and simulated extensively to prove equivalence with a reference all-software design. It has also been synthesized and turns out to outperform significantly other reconfigurable designs with respect to speed and area

    Adaptive Wireless Networking

    Get PDF
    This paper presents the Adaptive Wireless Networking (AWGN) project. The project aims to develop methods and technologies that can be used to design efficient adaptable and reconfigurable mobile terminals for future wireless communication systems. An overview of the activities in the project is given. Furthermore our vision on adaptivity in wireless communications and suggestions for future activities are presented

    Trade-off between power and bandwidth consumption in a reconfigurable xhaul network architecture

    Get PDF
    The increasing number of wireless devices, the high required traffic bandwidth, and power consumption will lead to a revolution of mobile access networks, which is not a simple evolution of traditional ones. Cloud radio access network technologies are seen as promising solution in order to deal with the heavy requirements defined for 5G mobile networks. The introduction of the common public radio interface (CPRI) technology allows for a centralization in BaseBand unit (BBU) of some access functions with advantages in terms of power consumption saving when switching off algorithms are implemented. Unfortunately, the advantages of the CPRI technology are to be paid with an increase in required bandwidth to carry the traffic between the BBU and the radio remote unit (RRU), in which only the radio functions are implemented. For this reason, a tradeoff solution between power and bandwidth consumption is proposed and evaluated. The proposed solution consists of: 1) handling the traffic generated by the users through both RRU and traditional radio base stations (RBS) and 2) carrying the traffic generated by the RRU and RBS (CPRI and Ethernet flows) with a reconfigurable network. The proposed solution is investigated under the lognormal spatial traffic distribution assumption. After proposing resource dimensioning analytical models validated by simulation, we show how the sum of the bandwidth and power consumption may be minimized with the deployment of a given percentage of RRU. For instance we show how in 5G traffic scenarios this percentage can vary from 30% to 50% according to total traffic amount handled by a switching node of the reconfigurable network

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve
    • ā€¦
    corecore