547 research outputs found

    Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis

    Get PDF
    In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    High-quality genome-scale metabolic modelling of \u3ci\u3ePseudomonas putida\u3c/i\u3e highlights its broad metabolic capabilities

    Get PDF
    Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas

    Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    Get PDF
    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here

    A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. <it>Salmonella enterica </it>subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem.</p> <p>Results</p> <p>Here, we describe a community-driven effort, in which more than 20 experts in <it>S</it>. Typhimurium biology and systems biology collaborated to reconcile and expand the <it>S</it>. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for <it>S</it>. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches.</p> <p>Conclusion</p> <p>Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.</p

    Coupling metabolic footprinting and flux balance analysis to predict how single gene knockouts perturb microbial metabolism

    Get PDF
    Tese de mestrado. Biologia (Bioinformática e Biologia Computacional). Universidade de Lisboa, Faculdade de Ciências, 2012The model organisms Caenorhabditis elegans and E. coli form one of the simplest gut microbe host interaction models. Interventions in the microbe that increase the host longevity including inhibition of folate synthesis have been reported previously. To find novel single gene knockouts with an effect on lifespan, a screen of the Keio collection of E. coli was undertaken, and some of the genes found are directly involved in metabolism. The next step in those specific cases is to understand how these mutations perturb metabolism systematically, so that hypotheses can be generated. For that, I employed dynamic Flux Balance Analysis (dFBA), a constraint-based modeling technique capable of simulating the dynamics of metabolism in a batch culture and making predictions about changes in intracellular flux distribution. Since the specificities of the C. elegans lifespan experiments demand us to culture microbes in conditions differing from most of the published literature on E. coli physiology, novel data must be acquired to characterize and make dFBA simulations as realistic as possible. To do this exchange fluxes were measured using quantitative H NMR Time-Resolved Metabolic Footprinting. Furthermore, I also investigate the combination of TReF and dFBA as a tool in microbial metabolism studies. These approaches were tested by comparing wild type E. coli with one of the knockout strains found, ΔmetL, a knockout of the metL gene which encodes a byfunctional enzyme involved in aspartate and threonine metabolism. I found that the strain exhibits a slower growth rate than the wild type. Model simulation results revealed that reduced homoserine and methionine synthesis, as well as impaired sulfur and folate metabolism are the main effects of this knockout and the reasons for the growth deficiency. These results indicate that there are common mechanisms of the lifespan extension between ΔmetL and inhibition of folate biosynthesis and that the flux balance analysis/metabolic footprinting approach can help us understand the nature of these mechanisms.Os organismos modelo Caenorhabditis elegans e E. coli formam um dos modelos mais simples de interacções entre micróbio do tracto digestivo e hospedeiro. Intervenções no micróbio capazes de aumentar a longevidade do hospedeiro, incluindo inibição de síntese de folatos, foram reportadas previamente. Para encontrar novas delecções génicas do micróbio capazes de aumentar a longevidade do hospedeiro, a colecção Keio de deleções génicas de E. coli foi rastreada. Alguns dos genes encontrados participam em processos metabólicos, e nesses casos, o próximpo passo é perceber como as deleções perturbam o metabolismo sistémicamente, para gerar hipóteses. Para isso, utilizo dynamic Flux Balance Analysis (dFBA), uma técnica de modelação metabólica capaz de fazer previsões sobre alterações na distribuição intracelular de fluxos. As especificidades das experiências de tempo de vida em C.elegans obrigam-nos a trabalhar em condições diferentes das usadas na maioria da literatura publicada em fisiologia de E. coli, e para dar o máximo realismo às simulações de dFBA novos dados foram adquiridos, utilizando H NMR Time-Resolved Metabolic Footprinting para medir fluxos de troca de metabolitos entre microorganismo e meio de cultura. A combinação de TReF e dFBA como ferramenta de estudo do metabolism microbiano é também investigada. Estas abordagens foram testadas ao comparar E. coli wild-type com uma das estirpes encontradas no rastreio, ΔmetL, knockout do gene metL, que codifica um enzima bifunctional participante no metabolismo de aspartato e treonina, e que exibe uma taxa de crescimento reduzida comparativamente ao wild-type. Os resultados das simulações revelaram que os principais efeitos da deleção deste gene, e as razões para a menor taxa de crescimento observada, são a produção reduzida de homoserina e metionina e os efeitos que provoca no metabolismo de folatos e enxofre. Estes resultados indicam que há mecanismos comuns na extensão da longevidade causada por esta deleção e inibição de síntese de folatos, e que a combinação metabolic footprinting/flux balance analysis pode ajudar-nos a compreender a natureza desses mecanismos

    Enabling comparative modeling of closely related genomes: Example genus Brucella

    Get PDF
    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this short report, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as well as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.We thank Jean Jacques Letesson, Maite Iriarte, Stephan Kohler and David O'Callaghan for their input on improving specific annotations. This project has been funded by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200900040C, awarded to BW Sobral, and from the United States National Science Foundation under Grant MCB-1153357, awarded to CS Henry. J.P.F. acknowledges funding from [FRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) Ph.D. scholarship

    MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks

    Get PDF
    Summary: MetaNetX.org is a website for accessing, analysing and manipulating genome-scale metabolic networks (GSMs) as well as biochemical pathways. It consistently integrates data from various public resources and makes the data accessible in a standardized format using a common namespace. Currently, it provides access to hundreds of GSMs and pathways that can be interactively compared (two or more), analysed (e.g. detection of dead-end metabolites and reactions, flux balance analysis or simulation of reaction and gene knockouts), manipulated and exported. Users can also upload their own metabolic models, choose to automatically map them into the common namespace and subsequently make use of the website's functionality. Availability and implementation: MetaNetX.org is available at http://metanetx.org. Contact: [email protected]
    corecore