179 research outputs found

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing ≈\approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    Where2Change: Change request localization for app reviews

    Get PDF

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Enhancing Mobile App User Understanding and Marketing with Heterogeneous Crowdsourced Data: A Review

    Full text link
    © 2013 IEEE. The mobile app market has been surging in recent years. It has some key differentiating characteristics which make it different from traditional markets. To enhance mobile app development and marketing, it is important to study the key research challenges such as app user profiling, usage pattern understanding, popularity prediction, requirement and feedback mining, and so on. This paper reviews CrowdApp, a research field that leverages heterogeneous crowdsourced data for mobile app user understanding and marketing. We first characterize the opportunities of the CrowdApp, and then present the key research challenges and state-of-the-art techniques to deal with these challenges. We further discuss the open issues and future trends of the CrowdApp. Finally, an evolvable app ecosystem architecture based on heterogeneous crowdsourced data is presented

    Do users care about ad's performance costs? Exploring the effects of the performance costs of in-app ads on user experience

    Get PDF
    Context: In-app advertising is the primary source of revenue for many mobile apps. The cost of advertising (ad cost) is non-negligible for app developers to ensure a good user experience and continuous profits. Previous studies mainly focus on addressing the hidden performance costs generated by ads, including consumption of memory, CPU, data traffic, and battery. However, there is no research on analyzing users’ perceptions of ads’ performance costs to our knowledge. / Objective: To fill this gap and better understand the effects of performance costs of in-app ads on user experience, we conduct a study on analyzing user concerns about ads’ performance costs. / Method: First, we propose RankMiner, an approach to quantify user concerns about specific app issues, including performance costs. Then, based on the usage traces of 20 subject apps, we measure the performance costs of ads. Finally, we conduct correlation analysis on the performance costs and quantified user concerns to explore whether users complain more for higher performance costs. / Results: Our findings include the following: (1) RankMiner can quantify users’ concerns better than baselines by an improvement of 214% and 2.5% in terms of Pearson correlation coefficient (a metric for computing correlations between two variables) and NDCG score (a metric for computing accuracy in prioritizing issues), respectively. (2) The performance costs of the with-ads versions are statistically significantly larger than those of no-ads versions with negligible effect size; (3) Users are more concerned about the battery costs of ads, and tend to be insensitive to ads’ data traffic costs. / Conclusion: Our study is complementary to previous work on in-app ads, and can encourage developers to pay more attention to alleviating the most user-concerned performance costs, such as battery cost

    The Influence of User Feedback on Complementary Innovation in Platform Ecosystems: NLP Evidence on the Value of Multihoming

    Get PDF
    We study how user feedback affects innovation of multihomed applications within and across platform ecosystems. Therefore, we conduct a quantitative NLP based case study. Our sample consists of 10 multihomed applications with more than 325,000 user reviews on Apple’s iOS and Google’s Android platform between January and March 2021. We analyze how user reviews translate into functional feature releases of the selected applications within and across platforms. We report three findings. First, we find that about 61% of the functional feature improvements on both platforms were previously demanded by users in the form of user feedback. Second, we show that user feedback of iOS users is more likely to be incorporated compared to Android users’ feedback. Finally, we observe that about 10% of feature releases are inspired by cross-platform feedback, providing initial evidence that user feedback from multihoming applications might stimulate cross-platform innovation and enhance the applications’ quality and innovativeness

    Mining app reviews to support software engineering

    Get PDF
    The thesis studies how mining app reviews can support software engineering. App reviews —short user reviews of an app in app stores— provide a potentially rich source of information to help software development teams maintain and evolve their products. Exploiting this information is however difficult due to the large number of reviews and the difficulty in extracting useful actionable information from short informal texts. A variety of app review mining techniques have been proposed to classify reviews and to extract information such as feature requests, bug descriptions, and user sentiments but the usefulness of these techniques in practice is still unknown. Research in this area has grown rapidly, resulting in a large number of scientific publications (at least 182 between 2010 and 2020) but nearly no independent evaluation and description of how diverse techniques fit together to support specific software engineering tasks have been performed so far. The thesis presents a series of contributions to address these limitations. We first report the findings of a systematic literature review in app review mining exposing the breadth and limitations of research in this area. Using findings from the literature review, we then present a reference model that relates features of app review mining tools to specific software engineering tasks supporting requirements engineering, software maintenance and evolution. We then present two additional contributions extending previous evaluations of app review mining techniques. We present a novel independent evaluation of opinion mining techniques using an annotated dataset created for our experiment. Our evaluation finds lower effectiveness than initially reported by the techniques authors. A final part of the thesis, evaluates approaches in searching for app reviews pertinent to a particular feature. The findings show a general purpose search technique is more effective than the state-of-the-art purpose-built app review mining techniques; and suggest their usefulness for requirements elicitation. Overall, the thesis contributes to improving the empirical evaluation of app review mining techniques and their application in software engineering practice. Researchers and developers of future app mining tools will benefit from the novel reference model, detailed experiments designs, and publicly available datasets presented in the thesis
    • 

    corecore