2,788 research outputs found

    Improving the quality of the personalized electronic program guide

    Get PDF
    As Digital TV subscribers are offered more and more channels, it is becoming increasingly difficult for them to locate the right programme information at the right time. The personalized Electronic Programme Guide (pEPG) is one solution to this problem; it leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile personalized viewing guides that fit their individual preferences. Very often the limited availability of profiling information is a key limiting factor in such personalized recommender systems. For example, it is well known that collaborative filtering approaches suffer significantly from the sparsity problem, which exists because the expected item-overlap between profiles is usually very low. In this article we address the sparsity problem in the Digital TV domain. We propose the use of data mining techniques as a way of supplementing meagre ratings-based profile knowledge with additional item-similarity knowledge that can be automatically discovered by mining user profiles. We argue that this new similarity knowledge can significantly enhance the performance of a recommender system in even the sparsest of profile spaces. Moreover, we provide an extensive evaluation of our approach using two large-scale, state-of-the-art online systems—PTVPlus, a personalized TV listings portal and Físchlár, an online digital video library system

    Considering temporal aspects in recommender systems: a survey

    Get PDF
    Under embargo until: 2023-07-04The widespread use of temporal aspects in user modeling indicates their importance, and their consideration showed to be highly effective in various domains related to user modeling, especially in recommender systems. Still, past and ongoing research, spread over several decades, provided multiple ad-hoc solutions, but no common understanding of the issue. There is no standardization and there is often little commonality in considering temporal aspects in different applications. This may ultimately lead to the problem that application developers define ad-hoc solutions for their problems at hand, sometimes missing or neglecting aspects that proved to be effective in similar cases. Therefore, a comprehensive survey of the consideration of temporal aspects in recommender systems is required. In this work, we provide an overview of various time-related aspects, categorize existing research, present a temporal abstraction and point to gaps that require future research. We anticipate this survey will become a reference point for researchers and practitioners alike when considering the potential application of temporal aspects in their personalized applications.acceptedVersio

    Beyond Optimizing for Clicks: Incorporating Editorial Values in News Recommendation

    Full text link
    With the uptake of algorithmic personalization in the news domain, news organizations increasingly trust automated systems with previously considered editorial responsibilities, e.g., prioritizing news to readers. In this paper we study an automated news recommender system in the context of a news organization's editorial values. We conduct and present two online studies with a news recommender system, which span one and a half months and involve over 1,200 users. In our first study we explore how our news recommender steers reading behavior in the context of editorial values such as serendipity, dynamism, diversity, and coverage. Next, we present an intervention study where we extend our news recommender to steer our readers to more dynamic reading behavior. We find that (i) our recommender system yields more diverse reading behavior and yields a higher coverage of articles compared to non-personalized editorial rankings, and (ii) we can successfully incorporate dynamism in our recommender system as a re-ranking method, effectively steering our readers to more dynamic articles without hurting our recommender system's accuracy.Comment: To appear in UMAP 202

    Probabilistic Personalized Recommendation Models For Heterogeneous Social Data

    Get PDF
    Content recommendation has risen to a new dimension with the advent of platforms like Twitter, Facebook, FriendFeed, Dailybooth, and Instagram. Although this uproar of data has provided us with a goldmine of real-world information, the problem of information overload has become a major barrier in developing predictive models. Therefore, the objective of this The- sis is to propose various recommendation, prediction and information retrieval models that are capable of leveraging such vast heterogeneous content. More specifically, this Thesis focuses on proposing models based on probabilistic generative frameworks for the following tasks: (a) recommending backers and projects in Kickstarter crowdfunding domain and (b) point of interest recommendation in Foursquare. Through comprehensive set of experiments over a variety of datasets, we show that our models are capable of providing practically useful results for recommendation and information retrieval tasks

    Web3Recommend: Decentralised recommendations with trust and relevance

    Full text link
    Web3Recommend is a decentralized Social Recommender System implementation that enables Web3 Platforms on Android to generate recommendations that balance trust and relevance. Generating recommendations in decentralized networks is a non-trivial problem because these networks lack a global perspective due to the absence of a central authority. Further, decentralized networks are prone to Sybil Attacks in which a single malicious user can generate multiple fake or Sybil identities. Web3Recommend relies on a novel graph-based content recommendation design inspired by GraphJet, a recommendation system used in Twitter enhanced with MeritRank, a decentralized reputation scheme that provides Sybil-resistance to the system. By adding MeritRank's decay parameters to the vanilla Social Recommender Systems' personalized SALSA graph algorithm, we can provide theoretical guarantees against Sybil Attacks in the generated recommendations. Similar to GraphJet, we focus on generating real-time recommendations by only acting on recent interactions in the social network, allowing us to cater temporally contextual recommendations while keeping a tight bound on the memory usage in resource-constrained devices, allowing for a seamless user experience. As a proof-of-concept, we integrate our system with MusicDAO, an open-source Web3 music-sharing platform, to generate personalized, real-time recommendations. Thus, we provide the first Sybil-resistant Social Recommender System, allowing real-time recommendations beyond classic user-based collaborative filtering. The system is also rigorously tested with extensive unit and integration tests. Further, our experiments demonstrate the trust-relevance balance of recommendations against multiple adversarial strategies in a test network generated using data from real music platforms

    How to combine visual features with tags to improve movie recommendation accuracy?

    Get PDF
    Previous works have shown the effectiveness of using stylistic visual features, indicative of the movie style, in content-based movie recommendation. However, they have mainly focused on a particular recommendation scenario, i.e., when a new movie is added to the catalogue and no information is available for that movie (New Item scenario). However, the stylistic visual features can be also used when other sources of information is available (Existing Item scenario). In this work, we address the second scenario and propose a hybrid technique that exploits not only the typical content available for the movies (e.g., tags), but also the stylistic visual content extracted form the movie files and fuse them by applying a fusion method called Canonical Correlation Analysis (CCA). Our experiments on a large catalogue of 13K movies have shown very promising results which indicates a considerable improvement of the recommendation quality by using a proper fusion of the stylistic visual features with other type of features

    Power to the Learner: Towards Human-Intuitive and Integrative Recommendations with Open Educational Resources

    Get PDF
    Educational recommenders have received much less attention in comparison with e-commerce- and entertainment-related recommenders, even though efficient intelligent tutors could have potential to improve learning gains and enable advances in education that are essential to achieving the world’s sustainability agenda. Through this work, we make foundational advances towards building a state-aware, integrative educational recommender. The proposed recommender accounts for the learners’ interests and knowledge at the same time as content novelty and popularity, with the end goal of improving predictions of learner engagement in a lifelong-learning educational video platform. Towards achieving this goal, we (i) formulate and evaluate multiple probabilistic graphical models to capture learner interest; (ii) identify and experiment with multiple probabilistic and ensemble approaches to combine interest, novelty, and knowledge representations together; and (iii) identify and experiment with different hybrid recommender approaches to fuse population-based engagement prediction to address the cold-start problem, i.e., the scarcity of data in the early stages of a user session, a common challenge in recommendation systems. Our experiments with an in-the-wild interaction dataset of more than 20,000 learners show clear performance advantages by integrating content popularity, learner interest, novelty, and knowledge aspects in an informational recommender system, while preserving scalability. Our recommendation system integrates a human-intuitive representation at its core, and we argue that this transparency will prove important in efforts to give agency to the learner in interacting, collaborating, and governing their own educational algorithms
    corecore