877 research outputs found

    Recommenders benchmark framework

    Full text link
    Abstract: Recommender Systems are software tools and techniques providing suggestions for items to be of use to a user. Recommender systems have proven to be a valuable means for online users to cope with the virtual information overload and have become one of the most powerful and popular tools in electronic commerce. Correspondingly, various techniques for recommendation generation have been proposed during the last decade. In this paper we present a new benchmark framework. It allows researchers or practitioners to quickly try out and compare different recommendation methods on new data sets. Extending the framework is easy thanks to a simple and well-defined Application Programming Interface (API). It contains a plug-in mechanism allowing others to develop their own algorithms and incorporate them in the framework. An interactive graphical user interface is provided for setting new benchmarks, integrate new plug-ins with the framework, setting up configurations and exploring benchmark results

    Real-Time Recommendation of Streamed Data

    Get PDF
    This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment

    Sequeval: A Framework to Assess and Benchmark Sequence-based Recommender Systems

    Get PDF
    In this paper, we present sequeval, a software tool capable of performing the offline evaluation of a recommender system designed to suggest a sequence of items. A sequence-based recommender is trained considering the sequences already available in the system and its purpose is to generate a personalized sequence starting from an initial seed. This tool automatically evaluates the sequence-based recommender considering a comprehensive set of eight different metrics adapted to the sequential scenario. sequeval has been developed following the best practices of software extensibility. For this reason, it is possible to easily integrate and evaluate novel recommendation techniques. sequeval is publicly available as an open source tool and it aims to become a focal point for the community to assess sequence-based recommender systems.Comment: REVEAL 2018 Workshop on Offline Evaluation for Recommender System

    Benchmarking News Recommendations in a Living Lab

    Get PDF
    Most user-centric studies of information access systems in literature suffer from unrealistic settings or limited numbers of users who participate in the study. In order to address this issue, the idea of a living lab has been promoted. Living labs allow us to evaluate research hypotheses using a large number of users who satisfy their information need in a real context. In this paper, we introduce a living lab on news recommendation in real time. The living lab has first been organized as News Recommendation Challenge at ACM RecSys’13 and then as campaign-style evaluation lab NEWSREEL at CLEF’14. Within this lab, researchers were asked to provide news article recommendations to millions of users in real time. Different from user studies which have been performed in a laboratory, these users are following their own agenda. Consequently, laboratory bias on their behavior can be neglected. We outline the living lab scenario and the experimental setup of the two benchmarking events. We argue that the living lab can serve as reference point for the implementation of living labs for the evaluation of information access systems

    Multi-modal Embedding Fusion-based Recommender

    Full text link
    Recommendation systems have lately been popularized globally, with primary use cases in online interaction systems, with significant focus on e-commerce platforms. We have developed a machine learning-based recommendation platform, which can be easily applied to almost any items and/or actions domain. Contrary to existing recommendation systems, our platform supports multiple types of interaction data with multiple modalities of metadata natively. This is achieved through multi-modal fusion of various data representations. We deployed the platform into multiple e-commerce stores of different kinds, e.g. food and beverages, shoes, fashion items, telecom operators. Here, we present our system, its flexibility and performance. We also show benchmark results on open datasets, that significantly outperform state-of-the-art prior work.Comment: 7 pages, 8 figure

    Comparative recommender system evaluation: Benchmarking recommendation frameworks

    Full text link
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in RecSys '14 Proceedings of the 8th ACM Conference on Recommender systems, http://dx.doi.org/10.1145/2645710.2645746Recommender systems research is often based on comparisons of predictive accuracy: the better the evaluation scores, the better the recommender. However, it is difficult to compare results from different recommender systems due to the many options in design and implementation of an evaluation strategy. Additionally, algorithmic implementations can diverge from the standard formulation due to manual tuning and modifications that work better in some situations. In this work we compare common recommendation algorithms as implemented in three popular recommendation frameworks. To provide a fair comparison, we have complete control of the evaluation dimensions being benchmarked: dataset, data splitting, evaluation strategies, and metrics. We also include results using the internal evaluation mechanisms of these frameworks. Our analysis points to large differences in recommendation accuracy across frameworks and strategies, i.e. the same baselines may perform orders of magnitude better or worse across frameworks. Our results show the necessity of clear guidelines when reporting evaluation of recommender systems to ensure reproducibility and comparison of results.This work was partly carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements n◦246016 and n◦610594, and the Spanish Ministry of Science and Innovation (TIN2013-47090-C3-2
    • …
    corecore