3,205 research outputs found

    User Fairness in Recommender Systems

    Full text link
    Recent works in recommendation systems have focused on diversity in recommendations as an important aspect of recommendation quality. In this work we argue that the post-processing algorithms aimed at only improving diversity among recommendations lead to discrimination among the users. We introduce the notion of user fairness which has been overlooked in literature so far and propose measures to quantify it. Our experiments on two diversification algorithms show that an increase in aggregate diversity results in increased disparity among the users

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Novel and Diverse Recommendations by Leveraging Linear Models with User and Item Embeddings

    Get PDF
    [Abstract] Nowadays, item recommendation is an increasing concern for many companies. Users tend to be more reactive than proactive for solving information needs. Recommendation accuracy became the most studied aspect of the quality of the suggestions. However, novel and diverse suggestions also contribute to user satisfaction. Unfortunately, it is common to harm those two aspects when optimizing recommendation accuracy. In this paper, we present EER, a linear model for the top-N recommendation task, which takes advantage of user and item embeddings for improving novelty and diversity without harming accuracy.This work was supported by project RTI2018-093336-B-C22 (MCIU & ERDF), project GPC ED431B 2019/03 (Xunta de Galicia & ERDF) and accreditation ED431G 2019/01 (Xunta de Galicia & ERDF). The first author also acknowledges the support of grant FPU17/03210 (MCIU)Xunta de Galicia; ED431B 2019/03Xunta de Galicia; ED431G 2019/0

    The Limits of Popularity-Based Recommendations, and the Role of Social Ties

    Get PDF
    In this paper we introduce a mathematical model that captures some of the salient features of recommender systems that are based on popularity and that try to exploit social ties among the users. We show that, under very general conditions, the market always converges to a steady state, for which we are able to give an explicit form. Thanks to this we can tell rather precisely how much a market is altered by a recommendation system, and determine the power of users to influence others. Our theoretical results are complemented by experiments with real world social networks showing that social graphs prevent large market distortions in spite of the presence of highly influential users.Comment: 10 pages, 9 figures, KDD 201

    How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility

    Full text link
    Recommendation systems are ubiquitous and impact many domains; they have the potential to influence product consumption, individuals' perceptions of the world, and life-altering decisions. These systems are often evaluated or trained with data from users already exposed to algorithmic recommendations; this creates a pernicious feedback loop. Using simulations, we demonstrate how using data confounded in this way homogenizes user behavior without increasing utility

    Optimal Pricing with Recommender Systems

    Get PDF
    We study optimal pricing in the presence of recommender systems. A recommender system affects the market in two ways: (i) it creates value by reducing product uncertainty for the customers and hence (ii) its recommendations can be offered as add-ons which generate informational externalities. The quality of the recommendation add-on is endogenously determined by sales. We investigate the impact of these factors on the optimal pricing by a seller with a recommender system against a competitive fringe without such a system. If the recommender system is sufficiently effective in reducing uncertainty, then the seller prices otherwise symmetric products differently to have some products experienced more aggressively. Moreover, the seller segments the market so that customers with more inflexible tastes pay higher prices to get better recommendations.Recommender system, Collaborative filtering, Add-ons, Pricing, Information externality
    • …
    corecore