628 research outputs found

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança InformĂĄtica, apresentada Ă  Universidade de Lisboa, atravĂ©s da Faculdade de CiĂȘncias, 2011O Protocolo de Internet versĂŁo 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas nĂŁo endereçados pelo seu antecessor, o Protocolo de Internet versĂŁo 4 (IPv4), nomeadamente questĂ”es relacionadas com segurança e com o espaço de endereçamento disponĂ­vel. SĂŁo muitos os que na Ășltima dĂ©cada tĂȘm desenvolvido estudos sobre os investimentos necessĂĄrios Ă  sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos pĂșblicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrĂĄrio do IPv4, esta nova versĂŁo considera a segurança como um objetivo fundamental na sua implementação, nesse sentido Ă© recomendado o uso do protocolo IPsec ao nĂ­vel da camada de rede. No entanto, e devido Ă  imaturidade do protocolo e Ă  complexidade que este perĂ­odo de transição comporta, existem inĂșmeras implicaçÔes de segurança que devem ser consideradas neste perĂ­odo de migração. O objetivo principal deste trabalho Ă© definir um conjunto de boas prĂĄticas no Ăąmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, Ă© de todo Ăștil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    Security Mechanisms For The Ipv4 To Ipv6 Transition.

    Get PDF
    Transition from lpv4 to lpv6 has been made possible through various transition mechanisms, categorized as dual-stack tunneling and translation. However, period of transition may take years to complete which both protocols will coexist due to Internet services deployed are widely in lpv4

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Active and Passive Monitoring and Analysis of IP Option Header Transparency from Covert Channel Point of View

    Get PDF
    In a context of network covert channels, unused header fields in communication protocols are vulnerable to embed secret data. An IP Option field in the IP header is considered as one of useful spaces for constructing the Internet-wide network covert channels. On the other hand, IP packets with IP Option have been said non-transparent on the global Internet. This paper investigates how an IP packet with IP option can be going through over the Internet by active and passive monitoring methods. At first, we investigated AS border traffic in an academic AS and a commercial IX. The result was that only four types of IP Options, Route Record (RR), Time Stamp (TS), No Operation (NOP) and End of Option List (EOOL), were observed. Then, we preliminary evaluated transparency of these four types IP Options over the global Internet by probing from ten Planetlab nodes on six countries against 5,000 randomly chosen destination IP addresses and 11,251 intermediate routers. Both destination addresses and intermediate routers were included in 1,132 intermediate ASes. As the active measurement result, 57% routers replied to IP packets with the RR Option, that is, the RR Option was transparent in 914 intermediate ASes on this experiment. On the other hand, 41% of intermediate routers replied probe packets with the TS option, that is, the TS Option was transparent in 811 intermediate ASes on this experiment

    Mobile IP: state of the art report

    Get PDF

    Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

    Get PDF
    Network measurements are an important tool in understanding the Internet. Due to the expanse of the IPv6 address space, exhaustive scans as in IPv4 are not possible for IPv6. In recent years, several studies have proposed the use of target lists of IPv6 addresses, called IPv6 hitlists. In this paper, we show that addresses in IPv6 hitlists are heavily clustered. We present novel techniques that allow IPv6 hitlists to be pushed from quantity to quality. We perform a longitudinal active measurement study over 6 months, targeting more than 50 M addresses. We develop a rigorous method to detect aliased prefixes, which identifies 1.5 % of our prefixes as aliased, pertaining to about half of our target addresses. Using entropy clustering, we group the entire hitlist into just 6 distinct addressing schemes. Furthermore, we perform client measurements by leveraging crowdsourcing. To encourage reproducibility in network measurement research and to serve as a starting point for future IPv6 studies, we publish source code, analysis tools, and data.Comment: See https://ipv6hitlist.github.io for daily IPv6 hitlists, historical data, and additional analyse

    Informing protocol design through crowdsourcing measurements

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorMiddleboxes, such as proxies, firewalls and NATs play an important role in the modern Internet ecosystem. On one hand, they perform advanced functions, e.g. traffic shaping, security or enhancing application performance. On the other hand, they turn the Internet into a hostile ecosystem for innovation, as they limit the deviation from deployed protocols. It is therefore essential, when designing a new protocol, to first understand its interaction with the elements of the path. The emerging area of crowdsourcing solutions can help to shed light on this issue. Such approach allows us to reach large and different sets of users and also different types of devices and networks to perform Internet measurements. In this thesis, we show how to make informed protocol design choices by expanding the traditional crowdsourcing focus from the human element and using crowdsourcing large scale measurement platforms. We consider specific use cases, namely the case of pervasive encryption in the modern Internet, TCP Fast Open and ECN++. We consider such use cases to advance the global understanding on whether wide adoption of encryption is possible in today’s Internet or the adoption of encryption is necessary to guarantee the proper functioning of HTTP/2. We target ECN and particularly ECN++, given its succession of deployment problems. We then measured ECN deployment over mobile as well as fixed networks. In the process, we discovered some bad news for the base ECN protocol—more than half the mobile carriers we tested wipe the ECN field at the first upstream hop. This thesis also reports the good news that, wherever ECN gets through, we found no deployment problems for the ECN++ enhancement. The thesis includes the results of other more in-depth tests to check whether servers that claim to support ECN, actually respond correctly to explicit congestion feedback, including some surprising congestion behaviour unrelated to ECN. This thesis also explores the possible causes that ossify the modern Internet and make difficult the advancement of the innovation. Network Address Translators (NATs) are a commonplace in the Internet nowadays. It is fair to say that most of the residential and mobile users are connected to the Internet through one or more NATs. As any other technology, NAT presents upsides and downsides. Probably the most acknowledged downside of the NAT technology is that it introduces additional difficulties for some applications such as peer-to-peer applications, gaming and others to function properly. This is partially due to the nature of the NAT technology but also due to the diversity of behaviors of the different NAT implementations deployed in the Internet. Understanding the properties of the currently deployed NAT base provides useful input for application and protocol developers regarding what to expect when deploying new application in the Internet. We develop NATwatcher, a tool to test NAT boxes using a crowdsourcingbased measurement methodology. We also perform large scale active measurement campaigns to detect CGNs in fixed broadband networks using NAT Revelio, a tool we have developed and validated. Revelio enables us to actively determine from within residential networks the type of upstream network address translation, namely NAT at the home gateway (customer-grade NAT) or NAT in the ISP (Carrier Grade NAT). We deploy Revelio in the FCC Measuring Broadband America testbed operated by SamKnows and also in the RIPE Atlas testbed. A part of this thesis focuses on characterizing CGNs in Mobile Network Operators (MNOs). We develop a measuring tool, called CGNWatcher that executes a number of active tests to fully characterize CGN deployments in MNOs. The CGNWatcher tool systematically tests more than 30 behavioural requirements of NATs defined by the Internet Engineering Task Force (IETF) and also multiple CGN behavioural metrics. We deploy CGNWatcher in MONROE and performed large measurement campaigns to characterize the real CGN deployments of the MNOs serving the MONROE nodes. We perform a large measurement campaign using the tools described above, recruiting over 6,000 users, from 65 different countries and over 280 ISPs. We validate our results with the ISPs at the IP level and, reported to the ground truth we collected. To the best of our knowledge, this represents the largest active measurement study of (confirmed) NAT or CGN deployments at the IP level in fixed and mobile networks to date. As part of the thesis, we characterize roaming across Europe. The goal of the experiment was to try to understand if the MNO changes CGN while roaming, for this reason, we run a series of measurements that enable us to identify the roaming setup, infer the network configuration for the 16 MNOs that we measure and quantify the end-user performance for the roaming configurations which we detect. We build a unique roaming measurement platform deployed in six countries across Europe. Using this platform, we measure different aspects of international roaming in 3G and 4G networks, including mobile network configuration, performance characteristics, and content discrimination. We find that operators adopt common approaches to implementing roaming, resulting in additional latency penalties of 60 ms or more, depending on geographical distance. Considering content accessibility, roaming poses additional constraints that leads to only minimal deviations when accessing content in the original country. However, geographical restrictions in the visited country make the picture more complicated and less intuitive. Results included in this thesis would provide useful input for application, protocol designers, ISPs and researchers that aim to make their applications and protocols to work across the modern Internet.Programa de Doctorado en IngenierĂ­a TelemĂĄtica por la Universidad Carlos III de MadridPresidente: Gonzalo Camarillo GonzĂĄlez.- Secretario: MarĂ­a Carmen Guerrero LĂłpez.- Vocal: AndrĂ©s GarcĂ­a Saavedr

    A New Model for Testing IPv6 Fragment Handling

    Full text link
    Since the origins of the Internet, various vulnerabilities exploiting the IP fragmentation process have plagued IPv4 protocol, many leading to a wide range of attacks. IPv6 modified the handling of fragmentations and introduced a specific extension header, not solving the related problems, as proved by extensive literature. One of the primary sources of problems has been the overlapping fragments, which result in unexpected or malicious packets when reassembled. To overcome the problem related to fragmentation, the authors of RFC 5722 decided that IPv6 hosts MUST silently drop overlapping fragments. Since then, several studies have proposed methodologies to check if IPv6 hosts accept overlapping fragments and are still vulnerable to related attacks. However, some of the above methodologies have not been proven complete or need to be more accurate. In this paper we propose a novel model to check IPv6 fragmentation handling specifically suited for the reassembling strategies of modern operating systems. Previous models, indeed, considered OS reassembly policy as byte-based. However, nowadays, reassembly policies are fragment-based, making previous models inadequate. Our model leverages the commutative property of the checksum, simplifying the whole assessing process. Starting with this new model, we were able to better evaluate the RFC-5722 and RFC-9099 compliance of modern operating systems against fragmentation handling. Our results suggest that IPv6 fragmentation can still be considered a threat and that more effort is needed to solve related security issues
    • 

    corecore