3,339 research outputs found

    Recommendations for performance assessment of automatic sleep staging algorithms

    No full text

    An open-source toolbox for standardized use of PhysioNet Sleep EDF Expanded Database.

    No full text

    Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

    Get PDF
    Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation. Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18μm process node technology. Results: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.Open Acces

    Automatic sleep staging using state machine-controlled decision trees.

    No full text

    Automatic neonatal sleep stage classification:A comparative study

    Get PDF
    Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study

    Validation of a Single Channel EEG for the Athlete: A Machine Learning Protocol to Accurately Detect Sleep Stages

    Get PDF
    There is a large and growing movement towards the use of wearable technologies for sleep assessment. This trend is largely due to the desire for comfortable, burden free, and inexpensive technology. In tandem, given the competitive nature of professional athletes enduring high training load, sleep is often jeopardized which can result in adverse outcomes. Wearable devices hold the promise of increasing the ease of monitoring sleep in athletes which can inform health and recovery status, as well as aid performance optimization. However, wearable devices typically lack sufficient validity to assess sleep – and especially sleep stages. To address this concern, the present study aimed to validate an algorithm to detect wakefulness, light sleep, deep sleep, and REM sleep against the gold standard polysomnography (PSG), using a wearable single channel electroencephalogram (EEG). Through the single channel EEG, machine learning models were built to infer sleep staging. The model was created from training and validating EEG output and labels assigned from the PSG software. Additionally, to determine the accuracy of agreement between the devices both Random Forest and a deep learning Convolutional Neural network model were implemented. The sleep staging output was consistent with our sleep staging algorithm for the single channel EEG and more notably, the sleep versus wake agreement was strong- above 80%. Our findings show that machine learning algorithms can be used with wearable devices to accurately detect, not only the sleep versus wake cycles, but the 4 sleep stages as well. Accordingly, this technology can be applied in an athlete population for accurate assessment of full sleep architecture

    Wearable Sleep Technology in Clinical and Research Settings

    Get PDF
    The accurate assessment of sleep is critical to better understand and evaluate its role in health and disease. The boom in wearable technology is part of the digital health revolution and is producing many novel, highly sophisticated and relatively inexpensive consumer devices collecting data from multiple sensors and claiming to extract information about users' behaviors, including sleep. These devices are now able to capture different biosignals for determining, for example, HR and its variability, skin conductance, and temperature, in addition to activity. They perform 24/7, generating overwhelmingly large data sets (big data), with the potential of offering an unprecedented window on users' health. Unfortunately, little guidance exists within and outside the scientific sleep community for their use, leading to confusion and controversy about their validity and application. The current state-of-the-art review aims to highlight use, validation and utility of consumer wearable sleep-trackers in clinical practice and research. Guidelines for a standardized assessment of device performance is deemed necessary, and several critical factors (proprietary algorithms, device malfunction, firmware updates) need to be considered before using these devices in clinical and sleep research protocols. Ultimately, wearable sleep technology holds promise for advancing understanding of sleep health; however, a careful path forward needs to be navigated, understanding the benefits and pitfalls of this technology as applied in sleep research and clinical sleep medicine

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Personalized automatic sleep staging with single-night data: a pilot study with Kullback-Leibler divergence regularization.

    Get PDF
    OBJECTIVE: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. APPROACH: As data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. MAIN RESULTS: Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. SIGNIFICANCE: We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization

    Sleep Stages Classification Using Spectral Based Statistical Moments as Features

    Get PDF
    In the pursuit of highly effective and efficient portable sleep classification systems, researchers have been testing a massive number of combinations of EEG features and classifiers.  State of art sleep classification ensembles achieve accuracy in the order of 90%.  However, there is presently no consensus regarding the best setof features for sleep staging with single channel EEG, leading researchers to modify feature selection according to the number of classification stages. This paper introduces a reduced set of frequency-domain features capable of yielding high classification accuracy (90.9%, 91.8%, 92.4%, 94.3% and 97.1%) for all 6- to 2-state sleep stages.  The proposed system uses fast Fourier transform (FFT) to convert data from Pz-Oz EEG channel into the frequency domain. Afterwards, eight statistical features are extracted from specific frequency ranges and fed into a random forest classifier
    • …
    corecore