10,645 research outputs found

    Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction

    Full text link
    With the availability of vast amounts of user visitation history on location-based social networks (LBSN), the problem of Point-of-Interest (POI) prediction has been extensively studied. However, much of the research has been conducted solely on voluntary checkin datasets collected from social apps such as Foursquare or Yelp. While these data contain rich information about recreational activities (e.g., restaurants, nightlife, and entertainment), information about more prosaic aspects of people's lives is sparse. This not only limits our understanding of users' daily routines, but more importantly the modeling assumptions developed based on characteristics of recreation-based data may not be suitable for richer check-in data. In this work, we present an analysis of education "check-in" data using WiFi access logs collected at Purdue University. We propose a heterogeneous graph-based method to encode the correlations between users, POIs, and activities, and then jointly learn embeddings for the vertices. We evaluate our method compared to previous state-of-the-art POI prediction methods, and show that the assumptions made by previous methods significantly degrade performance on our data with dense(r) activity signals. We also show how our learned embeddings could be used to identify similar students (e.g., for friend suggestions).Comment: published in KDD'1

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    CASTNet: Community-Attentive Spatio-Temporal Networks for Opioid Overdose Forecasting

    Full text link
    Opioid overdose is a growing public health crisis in the United States. This crisis, recognized as "opioid epidemic," has widespread societal consequences including the degradation of health, and the increase in crime rates and family problems. To improve the overdose surveillance and to identify the areas in need of prevention effort, in this work, we focus on forecasting opioid overdose using real-time crime dynamics. Previous work identified various types of links between opioid use and criminal activities, such as financial motives and common causes. Motivated by these observations, we propose a novel spatio-temporal predictive model for opioid overdose forecasting by leveraging the spatio-temporal patterns of crime incidents. Our proposed model incorporates multi-head attentional networks to learn different representation subspaces of features. Such deep learning architecture, called "community-attentive" networks, allows the prediction of a given location to be optimized by a mixture of groups (i.e., communities) of regions. In addition, our proposed model allows for interpreting what features, from what communities, have more contributions to predicting local incidents as well as how these communities are captured through forecasting. Our results on two real-world overdose datasets indicate that our model achieves superior forecasting performance and provides meaningful interpretations in terms of spatio-temporal relationships between the dynamics of crime and that of opioid overdose.Comment: Accepted as conference paper at ECML-PKDD 201

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors
    • 

    corecore