33,856 research outputs found

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Ontology-Based Recommendation of Editorial Products

    Get PDF
    Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution

    Recommendation System for News Reader

    Get PDF
    Recommendation Systems help users to find information and make decisions where they lack the required knowledge to judge a particular product. Also, the information dataset available can be huge and recommendation systems help in filtering this data according to users‟ needs. Recommendation systems can be used in various different ways to facilitate its users with effective information sorting. For a person who loves reading, this paper presents the research and implementation of a Recommendation System for a NewsReader Application using Android Platform. The NewsReader Application proactively recommends news articles as per the reading habits of the user, recorded over a period of time and also recommends the currently trending articles. Recommendation systems and their implementations using various algorithms is the primary area of study for this project. This research paper compares and details popular recommendation algorithms viz. Content based recommendation systems, Collaborative recommendation systems etc. Moreover, it also presents a more efficient Hybrid approach that absorbs the best aspects from both the algorithms mentioned above, while trying to eliminate all the potential drawbacks observed

    Detection of Trending Topic Communities: Bridging Content Creators and Distributors

    Full text link
    The rise of a trending topic on Twitter or Facebook leads to the temporal emergence of a set of users currently interested in that topic. Given the temporary nature of the links between these users, being able to dynamically identify communities of users related to this trending topic would allow for a rapid spread of information. Indeed, individual users inside a community might receive recommendations of content generated by the other users, or the community as a whole could receive group recommendations, with new content related to that trending topic. In this paper, we tackle this challenge, by identifying coherent topic-dependent user groups, linking those who generate the content (creators) and those who spread this content, e.g., by retweeting/reposting it (distributors). This is a novel problem on group-to-group interactions in the context of recommender systems. Analysis on real-world Twitter data compare our proposal with a baseline approach that considers the retweeting activity, and validate it with standard metrics. Results show the effectiveness of our approach to identify communities interested in a topic where each includes content creators and content distributors, facilitating users' interactions and the spread of new information.Comment: 9 pages, 4 figures, 2 tables, Hypertext 2017 conferenc
    • …
    corecore