533 research outputs found

    Square Property, Equitable Partitions, and Product-like Graphs

    Full text link
    Equivalence relations on the edge set of a graph GG that satisfy restrictive conditions on chordless squares play a crucial role in the theory of Cartesian graph products and graph bundles. We show here that such relations in a natural way induce equitable partitions on the vertex set of GG, which in turn give rise to quotient graphs that can have a rich product structure even if GG itself is prime.Comment: 20 pages, 6 figure

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved

    The edge fault-diameter of Cartesian graph bundles

    Get PDF
    AbstractA Cartesian graph bundle is a generalization of a graph covering and a Cartesian graph product. Let G be a kG-edge connected graph and D̄c(G) be the largest diameter of subgraphs of G obtained by deleting c<kG edges. We prove that D̄a+b+1(G)≤D̄a(F)+D̄b(B)+1 if G is a graph bundle with fibre F over base B, a<kF, and b<kB. As an auxiliary result we prove that the edge-connectivity of graph bundle G is at least kF+kB

    Master index of volumes 161–170

    Get PDF

    Weil-Petersson perspectives

    Full text link
    We highlight recent progresses in the study of the Weil-Petersson (WP) geometry of finite dimensional Teichm\"{u}ller spaces. For recent progress on and the understanding of infinite dimensional Teichm\"{u}ller spaces the reader is directed to the recent work of Teo-Takhtajan. As part of the highlight, we also present possible directions for future investigations.Comment: 18 page

    A diagrammatic view of differential equations in physics

    Full text link
    Presenting systems of differential equations in the form of diagrams has become common in certain parts of physics, especially electromagnetism and computational physics. In this work, we aim to put such use of diagrams on a firm mathematical footing, while also systematizing a broadly applicable framework to reason formally about systems of equations and their solutions. Our main mathematical tools are category-theoretic diagrams, which are well known, and morphisms between diagrams, which have been less appreciated. As an application of the diagrammatic framework, we show how complex, multiphysical systems can be modularly constructed from basic physical principles. A wealth of examples, drawn from electromagnetism, transport phenomena, fluid mechanics, and other fields, is included.Comment: 69 page
    corecore