1,372 research outputs found

    Exploring multimedia and interactive technologies

    Get PDF
    The goal of multimedia design strategies and innovation is to produce meaningful learning environments that relate to and build upon what the learner already knows and what the learner seeks. The multimedia tools used to achieve knowledge transfer should activate recall or prior knowledge and help the learner alter and encode new structures. Traditionally, multimedia has been localized to specific delivery systems and demographics based on the government, industry, or academic concentration. The presenter will explore the introduction of immersive telecommunications technologies, constructivist learning methodologies, and adult learning models to standardize networking and multimedia-based services and products capable of adapting to wired and wireless environments, different devices and conditions on a global scale

    Wearable Technology: Opportunities and Challenges for Teaching and Learning in Higher Education in Developing Countries

    Get PDF
    The higher education landscape in developing countries is faced with many challenges, one of which is high faculty to student ratio. An obvious implication of this is compromise on the quality of classroom engagement. The distractions caused by the not conducive learning space and instructors’ inability to elucidate correct feedbacks from students usually lead to poor learning outcomes. Feedback mechanisms that are unobtrusive and efficient in processing large data in real-time are needful to measure quality learning experience in such large classroom settings. With the latest impact of penetration and adoption of internet and mobile technologies in most developing counties, wearable technology is a feasible solution to manage and monitor classroom involvement; as real time student feedback can be integrated in the design and delivery of instruction in and out of the classroom. In this paper, we present state of the art of wearable technology and explored the opportunities of wearable technology in the higher education. Specifically, we presented scenarios in which wearable technology can be employed to understand and analyze physiological signals and emotional responses from learners in real-time; the end result of which would increase the quality of classroom engagement, inspire new pedagogy, drive new trends in peer-to-peer collaborations, and increase the learning outcomes. Moreover, we identified some challenges that may hinder this development such as: inconclusive user studies of wearable technology in developing countries and inadequate infrastructure. Finally, we make appropriate recommendations on how these challenges can be surmounte

    A framework for learning analytics using commodity wearable devices

    Get PDF
    We advocate for and introduce LEARNSense, a framework for learning analytics using commodity wearable devices to capture learner’s physical actions and accordingly infer learner context (e.g., student activities and engagement status in class). Our work is motivated by the observations that: (a) the fine-grained individual-specific learner actions are crucial to understand learners and their context information; (b) sensor data available on the latest wearable devices (e.g., wrist-worn and eye wear devices) can effectively recognize learner actions and help to infer learner context information; (c) the commodity wearable devices that are widely available on the market can provide a hassle-free and non-intrusive solution. Following the above observations and under the proposed framework, we design and implement a sensor-based learner context collector running on the wearable devices. The latest data mining and sensor data processing techniques are employed to detect different types of learner actions and context information. Furthermore, we detail all of the above efforts by offering a novel and exemplary use case: it successfully provides the accurate detection of student actions and infers the student engagement states in class. The specifically designed learner context collector has been implemented on the commodity wrist-worn device. Based on the collected and inferred learner information, the novel intervention and incentivizing feedback are introduced into the system service. Finally, a comprehensive evaluation with the real-world experiments, surveys and interviews demonstrates the effectiveness and impact of the proposed framework and this use case. The F1 score for the student action classification tasks achieve 0.9, and the system can effectively differentiate the defined three learner states. Finally, the survey results show that the learners are satisfied with the use of our system (mean score of 3.7 with a standard deviation of 0.55)

    Mobile Language Learning Innovation Inspired by Migrants

    Get PDF
    Migrants arriving in a country are not always welcome. Similarly, the arrival of new technologies can be perceived as a blot on the familiar landscape of established educational practices. This paper seeks a productive synergy between migrants’ educational requirements with respect to learning the language of their host society; their valuable and unique human experiences and talents; and innovative learning designs that harness the ubiquity of smartphones and other mobile technologies. The present-day mass mobility and migration of individuals and groups of people sows the seeds of new ideas, generating novel approaches to language teaching and learning supported by personal technologies. There is a substantial body of evidence from research and practice for the effectiveness and appeal of mobile language learning in various educational settings, however, a specific focus on migrant learners is a more recent development. The paper provides an analysis of innovative mobile language learning projects and applications designed for migrants. It is argued that innovations resulting from a concern with supporting migrant learners can also benefit other mobile populations, such as students and business people, through the introduction of more adaptable ways of fostering and organizing learning

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    OER in the Mobile Era: Content Repositories’ Features for Mobile Devices and Future Trends

    Get PDF
    Learning objects and open contents have been named in the Horizon reports from 2004 and 2010 respectively, predicting to have an impact in the short term due to the current trend of offering open content for free on the Web. OER repositories should adapt their features so their contents can be accessed from mobile devices. This paper summarizes recent trends in the creation, publication, discovery, acquisition, access, use and re-use of learning objects on mobile devices based on a literature review on research done from 2007 to 2012. From the content providers side, we present the results obtained from a survey performed on 23 educational repository owners prompting them to an- swer about their current and expected support on mobile devices. From the content user side, we identify features provided by the main OER repositories. Finally, we intro- duce future trends and our next contribution

    NMC Horizon Report: 2017 Higher Education Edition

    Get PDF
    The NMC Horizon Report > 2017 Higher Education Edition is a collaborative effort between the NMC and the EDUCAUSE Learning Initiative (ELI). This 14th edition describes annual findings from the NMC Horizon Project, an ongoing research project designed to identify and describe emerging technologies likely to have an impact on learning, teaching, and creative inquiry in education. Six key trends, six significant challenges, and six important developments in educational technology are placed directly in the context of their likely impact on the core missions of universities and colleges. The three key sections of this report constitute a reference and straightforward technology-planning guide for educators, higher education leaders, administrators, policymakers, and technologists. It is our hope that this research will help to inform the choices that institutions are making about technology to improve, support, or extend teaching, learning, and creative inquiry in higher education across the globe. All of the topics were selected by an expert panel that represented a range of backgrounds and perspectives
    • …
    corecore