4,149 research outputs found

    Deciding the finiteness of the number of simple permutations contained in a wreath-closed class is polynomial

    Get PDF
    We present an algorithm running in time O(n ln n) which decides if a wreath-closed permutation class Av(B) given by its finite basis B contains a finite number of simple permutations. The method we use is based on an article of Brignall, Ruskuc and Vatter which presents a decision procedure (of high complexity) for solving this question, without the assumption that Av(B) is wreath-closed. Using combinatorial, algorithmic and language theoretic arguments together with one of our previous results on pin-permutations, we are able to transform the problem into a co-finiteness problem in a complete deterministic automaton

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    Counting Value Sets: Algorithm and Complexity

    Full text link
    Let pp be a prime. Given a polynomial in \F_{p^m}[x] of degree dd over the finite field \F_{p^m}, one can view it as a map from \F_{p^m} to \F_{p^m}, and examine the image of this map, also known as the value set. In this paper, we present the first non-trivial algorithm and the first complexity result on computing the cardinality of this value set. We show an elementary connection between this cardinality and the number of points on a family of varieties in affine space. We then apply Lauder and Wan's pp-adic point-counting algorithm to count these points, resulting in a non-trivial algorithm for calculating the cardinality of the value set. The running time of our algorithm is (pmd)O(d)(pmd)^{O(d)}. In particular, this is a polynomial time algorithm for fixed dd if pp is reasonably small. We also show that the problem is #P-hard when the polynomial is given in a sparse representation, p=2p=2, and mm is allowed to vary, or when the polynomial is given as a straight-line program, m=1m=1 and pp is allowed to vary. Additionally, we prove that it is NP-hard to decide whether a polynomial represented by a straight-line program has a root in a prime-order finite field, thus resolving an open problem proposed by Kaltofen and Koiran in \cite{Kaltofen03,KaltofenKo05}

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Bounding Stochastic Dependence, Complete Mixability of Matrices, and Multidimensional Bottleneck Assignment Problems

    Full text link
    We call a matrix completely mixable if the entries in its columns can be permuted so that all row sums are equal. If it is not completely mixable, we want to determine the smallest maximal and largest minimal row sum attainable. These values provide a discrete approximation of of minimum variance problems for discrete distributions, a problem motivated by the question how to estimate the α\alpha-quantile of an aggregate random variable with unknown dependence structure given the marginals of the constituent random variables. We relate this problem to the multidimensional bottleneck assignment problem and show that there exists a polynomial 22-approximation algorithm if the matrix has only 33 columns. In general, deciding complete mixability is NP\mathcal{NP}-complete. In particular the swapping algorithm of Puccetti et al. is not an exact method unless NP⊆ZPP\mathcal{NP}\subseteq\mathcal{ZPP}. For a fixed number of columns it remains NP\mathcal{NP}-complete, but there exists a PTAS. The problem can be solved in pseudopolynomial time for a fixed number of rows, and even in polynomial time if all columns furthermore contain entries from the same multiset
    • …
    corecore