1,533 research outputs found

    Vertex elimination orderings for hereditary graph classes

    Full text link
    We provide a general method to prove the existence and compute efficiently elimination orderings in graphs. Our method relies on several tools that were known before, but that were not put together so far: the algorithm LexBFS due to Rose, Tarjan and Lueker, one of its properties discovered by Berry and Bordat, and a local decomposition property of graphs discovered by Maffray, Trotignon and Vu\vskovi\'c. We use this method to prove the existence of elimination orderings in several classes of graphs, and to compute them in linear time. Some of the classes have already been studied, namely even-hole-free graphs, square-theta-free Berge graphs, universally signable graphs and wheel-free graphs. Some other classes are new. It turns out that all the classes that we study in this paper can be defined by excluding some of the so-called Truemper configurations. For several classes of graphs, we obtain directly bounds on the chromatic number, or fast algorithms for the maximum clique problem or the coloring problem

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions
    corecore