146 research outputs found

    Recognizing graphs of acyclic cubical complexes

    Get PDF
    AbstractAcyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(mlogn) which recognizes whether a given graph G on n vertices with m edges is the graph of an acyclic cubical complex. This is significantly better than the complexity O(mn) of the fastest currently known algorithm for recognizing retracts of cubes in general

    Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

    Full text link
    We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.Comment: Graph Drawing 201

    On the Structure of Graphs With Few P4s

    Get PDF
    We present new classes of graphs for which the isomorphism problem can be solved in polynomial time. These graphs are characterized by containing — in some local sense — only a small number of induced paths of length three. As it turns out, every such graph has a unique tree representation: the internal nodes correspond to three types of graph operations, while the leaves are basic graphs with a simple structure. The paper extends and generalizes known results about cographs, P4-reducible graphs, and P4-sparse graphs

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201
    • …
    corecore