301 research outputs found

    View generated database

    Get PDF
    This document represents the final report for the View Generated Database (VGD) project, NAS7-1066. It documents the work done on the project up to the point at which all project work was terminated due to lack of project funds. The VGD was to provide the capability to accurately represent any real-world object or scene as a computer model. Such models include both an accurate spatial/geometric representation of surfaces of the object or scene, as well as any surface detail present on the object. Applications of such models are numerous, including acquisition and maintenance of work models for tele-autonomous systems, generation of accurate 3-D geometric/photometric models for various 3-D vision systems, and graphical models for realistic rendering of 3-D scenes via computer graphics

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review onĀ Ā  a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Voids in the Large-Scale Structure

    Get PDF
    Voids are the most prominent feature of the LSS of the universe. Still, they have been generally ignored in quantitative analysis of it, essentially due to the lack of an objective tool to identify and quantify the voids. To overcome this, we present the Void-Finder algorithm, a novel tool for objectively quantifying galaxy voids. The algorithm classifies galaxies as either wall- or field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall-galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. We test the algorithm using Voronoi tessellations. By appropriate scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by the voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint galaxies populate the voids more than bright ones. These results suggest that both optically and IRAS selected galaxies delineate the same LSS. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to under-dense regions in the mass distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and natbib, 1 table, 12 PS figures. Complete gzipped version is available at http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i

    Image Understanding and Robotics Research at Columbia University

    Get PDF
    Over the past year, the research investigations of the Vision/Robotics Laboratory at Columbia University have reflected the interests of its four faculty members, two staff programmers, and 16 Ph.D. students. Several of the projects involve other faculty members in the department or the university, or researchers at AT&T, IBM, or Philips. We list below a summary of our interests and results, together with the principal researchers associated with them. Since it is difficult to separate those aspects of robotic research that are purely visual from those that are vision-like (for example, tactile sensing) or vision-related (for example, integrated vision-robotic systems), we have listed all robotic research that is not purely manipulative. The majority of our current investigations are deepenings of work reported last year; this was the second year of both our basic Image Understanding contract and our Strategic Computing contract. Therefore, the form of this year's report closely resembles last year's. Although there are a few new initiatives, mainly we report the new results we have obtained in the same five basic research areas. Much of this work is summarized on a video tape that is available on request. We also note two service contributions this past year. The Special Issue on Computer Vision of the Proceedings of the IEEE, August, 1988, was co-edited by one of us (John Kender [27]). And, the upcoming IEEE Computer Society Conference on Computer Vision and Pattem Recognition, June, 1989, is co-program chaired by one of us (John Kender [23])

    Automated Assembly Using Feature Localization

    Get PDF
    Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed

    Part Description and Segmentation Using Contour, Surface and Volumetric Primitives

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. The Ultimate goal of segmenting range images into meaningful parts and objects has proved to be very difficult to realize, mainly due to the isolation of the segmentation problem from the issue of representation. We propose a paradigm for part description and segmentation by integration of contour, surface, and volumetric primitives. Unlike previous approaches, we have used geometric properties derived from both boundary-based (surface contours and occluding contours), and primitive-based (quadric patches and superquadric models) representations to define and recover part-whole relationships, without a priori knowledge about the objects or object domain. The object shape is described at three levels of complexity, each contributing to the overall shape. Our approach can be summarized as answering the following question : Given that we have all three different modules for extracting volume, surface and boundary properties, how should they be invoked, evaluated and integrated? Volume and boundary fitting, and surface description are performed in parallel to incorporate the best of the coarse to fine and fine to coarse segmentation strategy. The process involves feedback between the segmentor (the Control Module) and individual shape description modules. The control module evaluates the intermediate descriptions and formulates hypotheses about parts. Hypotheses are further tested by the segmentor and the descriptors. The descriptions thus obtained are independent of position, orientation, scale, domain and domain properties, and are based purely on geometric considerations. They are extremely useful for the high level domain dependent symbolic reasoning processes, which need not deal with tremendous amount of data, but only with a rich description of data in terms of primitives recovered at various levels of complexity

    3D analysis of tooth surfaces to aid accurate brace placement

    Get PDF
    Master'sMASTER OF ENGINEERIN
    • ā€¦
    corecore