2,039 research outputs found

    The Complexity of Simultaneous Geometric Graph Embedding

    Full text link
    Given a collection of planar graphs G1,…,GkG_1,\dots,G_k on the same set VV of nn vertices, the simultaneous geometric embedding (with mapping) problem, or simply kk-SGE, is to find a set PP of nn points in the plane and a bijection ϕ:V→P\phi: V \to P such that the induced straight-line drawings of G1,…,GkG_1,\dots,G_k under ϕ\phi are all plane. This problem is polynomial-time equivalent to weak rectilinear realizability of abstract topological graphs, which Kyn\v{c}l (doi:10.1007/s00454-010-9320-x) proved to be complete for ∃R\exists\mathbb{R}, the existential theory of the reals. Hence the problem kk-SGE is polynomial-time equivalent to several other problems in computational geometry, such as recognizing intersection graphs of line segments or finding the rectilinear crossing number of a graph. We give an elementary reduction from the pseudoline stretchability problem to kk-SGE, with the property that both numbers kk and nn are linear in the number of pseudolines. This implies not only the ∃R\exists\mathbb{R}-hardness result, but also a 22Ω(n)2^{2^{\Omega (n)}} lower bound on the minimum size of a grid on which any such simultaneous embedding can be drawn. This bound is tight. Hence there exists such collections of graphs that can be simultaneously embedded, but every simultaneous drawing requires an exponential number of bits per coordinates. The best value that can be extracted from Kyn\v{c}l's proof is only 22Ω(n)2^{2^{\Omega (\sqrt{n})}}

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Planarity of Streamed Graphs

    Full text link
    In this paper we introduce a notion of planarity for graphs that are presented in a streaming fashion. A streamed graph\textit{streamed graph} is a stream of edges e1,e2,...,eme_1,e_2,...,e_m on a vertex set VV. A streamed graph is ω\omega-stream planar\textit{stream planar} with respect to a positive integer window size ω\omega if there exists a sequence of planar topological drawings Γi\Gamma_i of the graphs Gi=(V,{ej∣i≤j<i+ω})G_i=(V,\{e_j \mid i\leq j < i+\omega\}) such that the common graph G∩i=Gi∩Gi+1G^{i}_\cap=G_i\cap G_{i+1} is drawn the same in Γi\Gamma_i and in Γi+1\Gamma_{i+1}, for 1≤i<m−ω1\leq i < m-\omega. The Stream Planarity\textit{Stream Planarity} Problem with window size ω\omega asks whether a given streamed graph is ω\omega-stream planar. We also consider a generalization, where there is an additional backbone graph\textit{backbone graph} whose edges have to be present during each time step. These problems are related to several well-studied planarity problems. We show that the Stream Planarity\textit{Stream Planarity} Problem is NP-complete even when the window size is a constant and that the variant with a backbone graph is NP-complete for all ω≥2\omega \ge 2. On the positive side, we provide O(n+ωm)O(n+\omega{}m)-time algorithms for (i) the case ω=1\omega = 1 and (ii) all values of ω\omega provided the backbone graph consists of one 22-connected component plus isolated vertices and no stream edge connects two isolated vertices. Our results improve on the Hanani-Tutte-style O((nm)3)O((nm)^3)-time algorithm proposed by Schaefer [GD'14] for ω=1\omega=1.Comment: 21 pages, 9 figures, extended version of "Planarity of Streamed Graphs" (9th International Conference on Algorithms and Complexity, 2015
    • …
    corecore