5 research outputs found

    Brain computer interfaces: an engineering view. Design, implementation and test of a SSVEP-based BCI.

    Get PDF
    This thesis presents the realization of a compact, yet flexible BCI platform, which, when compared to most commercially-available solution, can offer an optimal trade-off between the following requirements: (i) minimal, easy experimental setup; (ii) flexibility, allowing simultaneous studies on other bio-potentials; (iii) cost effectiveness (e.g. < 1000 €); (iv) robust design, suitable for operation outside lab environments. The thesis encompasses all the project phases, from hardware design and realization, up to software and signal processing. The work started from the development of the hardware acquisition unit. It resulted in a compact, battery-operated module, whose medium-to-large scale production costs are in the range of 300 €. The module features 16 input channels and can be used to acquire different bio-potentials, including EEG, EMG, ECG. Module performance is very good (RTI noise < 1.3 uVpp), and was favourably compared against a commercial device (g.tec USBamp). The device was integrated into an ad-hoc developed Matlab-based platform, which handles the hardware control, as well as the data streaming, logging and processing. Via a specifically developed plug-in, incoming data can also be streamed to a TOBI-interface compatible system. As a demonstrator, the BCI was developed for AAL (Ambient Assisted Living) system-control purposes, having in mind the following requirements: (i) online, self-paced BCI operation (i.e., the BCI monitors the EEG in real-time and must discern between intentional control periods, and non-intentional, rest ones, interpreting the user’s intent only in the first case); (ii) calibration-free approach (“ready-to-use”, “Plug&Play”); (iii) subject-independence (general approach). The choice of the BCI operating paradigm fell on Steady State visual Evoked Potential (SSVEP). Two offline SSVEP classification algorithms were proposed and compared against reference literature, highlighting good performance, especially in terms of lower computational complexity. A method for improving classification accuracy was presented, suitable for use in online, self-paced scenarios (since it can be used to discriminate between intentional control periods and non-intentional ones). Results show a very good performance, in particular in terms of false positives immunity (0.26 min^-1), significantly improving over the state of the art. The whole BCI setup was tested both in lab condition, as well as in relatively harsher ones (in terms of environmental noise and non-idealities), such as in the context of the Handimatica 2014 exhibition. In both cases, a demonstrator allowing control of home appliances through BCI was developed

    Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making

    Aeronautical engineering: A continuing bibliography with indexes (supplement 269)

    Get PDF
    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Solar-terrestrial Predictions Proceedings. Volume 1: Prediction Group Reports

    Get PDF
    The current practice in solar terrestrial predictions is reviewed with emphasis of prediction, warning, and monitoring services. Topics covered include: ionosphere-reflected HF radio propagation; radiation hazards for manned space flights and high altitude and high latitude aircraft flights; and geomagnetic activity

    Publications of Goddard Space Flight Center, 1964. Volume I - Space sciences

    Get PDF
    This publication is a collection of articles, papers, talks, and reports generated by the scientific and engineering staff of Goddard Space Flight Center in the year 1964. Many of these articles were originally published in scientific or engineering Journals or as official NASA technical publications, while other are documents of a more informal nature. All are reprinted here as nearly verbatim as typography and format will permit. These articles are grouped into broad subject categories, but no detailed subdivision has been made. Within each category, the articles are arranged alphabetically by author. An overall author index is given in the back of the volume. The years 1963, 1964, and 1965 are being published as whole-year issues, and the resulting size dictates the use of two volumes; the first volume is titled Space Sciences, and the second Space Technology. It is anticipated, however, that future issues will be quarterly single volumes
    corecore