317 research outputs found

    Deterministic Chaos: Applications in Cardiac Electrophysiology

    Get PDF
    Our universe is a complex system. It is made up of many moving parts as a dynamic, multifaceted machine that works in perfect harmony to create the natural world that allows us life. The modeling of dynamical systems is the key to understanding the complex workings of our universe. One such complexity is chaos: a condition exhibited by an irregular or aperiodic nonlinear deterministic system. Data that is generated by a chaotic mechanism will appear scattered and random, yet can be defined by a system of nonlinear equations. These mathematical equations are characterized by their sensitivity to input values (initial conditions), so that small differences in the starting value will lead to large differences in the outcome. With deterministic chaos, it is nearly impossible to make long-term predictions of results. A system must have at least three dimensions, and nonlinear characteristics, in order to generate deterministic chaos. When nonlinearity is introduced as a term in a deterministic model, chaos becomes possible. These nonlinear dynamical systems are seen in many aspects of nature and human physiology. This paper will discuss how the distribution of blood throughout the human body, including factors affecting the heart and blood vessels, demonstrate chaotic behavior. The physiological studies presented in this paper represent some of the investigations into the chaotic systems that can be found in the human body. With modern computing technologies, we are able to identify patterns that were previously thought to be random variations of regular systems, such as the heartbeat. By understanding these systems on a mathematical level, scientists can produce mathematical models of irregular oscillations within the body. Currently, research is being conducted to develop chaos control techniques to treat patients with heart rhythm irregularities. This paper will first introduce chaos theory in a historical context, and then present some of its modern scientific applications

    Interaction dynamics and autonomy in cognitive systems

    Get PDF
    The concept of autonomy is of crucial importance for understanding life and cognition. Whereas cellular and organismic autonomy is based in the self-production of the material infrastructure sustaining the existence of living beings as such, we are interested in how biological autonomy can be expanded into forms of autonomous agency, where autonomy as a form of organization is extended into the behaviour of an agent in interaction with its environment (and not its material self-production). In this thesis, we focus on the development of operational models of sensorimotor agency, exploring the construction of a domain of interactions creating a dynamical interface between agent and environment. We present two main contributions to the study of autonomous agency: First, we contribute to the development of a modelling route for testing, comparing and validating hypotheses about neurocognitive autonomy. Through the design and analysis of specific neurodynamical models embedded in robotic agents, we explore how an agent is constituted in a sensorimotor space as an autonomous entity able to adaptively sustain its own organization. Using two simulation models and different dynamical analysis and measurement of complex patterns in their behaviour, we are able to tackle some theoretical obstacles preventing the understanding of sensorimotor autonomy, and to generate new predictions about the nature of autonomous agency in the neurocognitive domain. Second, we explore the extension of sensorimotor forms of autonomy into the social realm. We analyse two cases from an experimental perspective: the constitution of a collective subject in a sensorimotor social interactive task, and the emergence of an autonomous social identity in a large-scale technologically-mediated social system. Through the analysis of coordination mechanisms and emergent complex patterns, we are able to gather experimental evidence indicating that in some cases social autonomy might emerge based on mechanisms of coordinated sensorimotor activity and interaction, constituting forms of collective autonomous agency

    Occam\u27s Razor Vol. 6 - Full (2016)

    Get PDF

    Condensed-Matter-Principia Based Information & Statistical Measures

    Get PDF
    This book summarizes the efforts of ten papers collected by the Special Issue "Condensed-Matter-Principia Based Information & Statistical Measures: From Classical to Quantum". It calls for papers which deal with condensed-matter systems, or their interdisciplinary analogs, for which well-defined classical–statistical vs. quantum information measures can be inferred while based on the entropy concept. The contents have mainly been rested upon objectives addressed by an international colloquium held on October 2019, in UTP Bydgoszcz, Poland (see http://zmpf.imif.utp.edu.pl/rci-jcs/rci-jcs-4/), with an emphasis placed on the achievements of Professor Gerard Czajkowski, who commenced his research activity with open diffusion–reaction systems under the supervision of Roman S. Ingarden (Toruń), a father of Polish synergetics, and original thermodynamic approaches to self-organization. The active cooperation of Professor Czajkowski, mainly with German physicists (Friedrich Schloegl, Aachen; Werner Ebeling, Berlin), ought to be highlighted. In light of this, a development of his research, as it has moved from statistical thermodynamics to solid state theory, pursued in terms of nonlinear solid-state optics (Franco Bassani, Pisa), and culminated very recently with large quasiparticles termed Rydberg excitons, and their coherent interactions with light, is worth delineating

    Towards RF graphene devices: A review

    Get PDF
    Graphene has been targeted for a wide variety of applications due to its characteristics. It is a zero-bandgap material, has high conductivity, and high carrier mobility, which makes it a promising material for radiofrequency applications. This review examines the applications of graphene in the design of radiofrequency building blocks, their performance, and current hurdles. Initially, graphene passive devices (inductors, capacitors, antennas, and waveguides) are analyzed, as well as their current modelling techniques. Then, radiofrequency transistors and their modelling are reported and discussed. An insight on the current state of radiofrequency devices is provided which more specifically targets graphene oscillators, multipliers, and mixers. Finally, the current fabrication issues and techniques are analyzed and discussed, providing a global overview on the application of graphene for radiofrequency electronics.Work supported by PTDC/EEI-TEL/29670/2017 - (POCI-01-0145-FEDER-029670), co-financed by the European Regional Development Fund (ERDF), through COMPETE 2020, grant SFRH/BD/141462/2018, grant SFRH/BD/137529/2018, grant UIDB/04436/2020, grant UIDP/04436/2020, and grant UIDB/04650/2020

    Consciousness in the Universe is Scale Invariant and Implies an Event Horizon of the Human Brain

    Get PDF
    Our brain is not a "stand alone" information processing organ: it acts as a central part of our integral nervous system with recurrent information exchange with the entire organism and the cosmos. In this study, the brain is conceived to be embedded in a holographic structured field that interacts with resonant sensitive structures in the various cell types in our body. In order to explain earlier reported ultra-rapid brain responses and effective operation of the meta-stable neural system, a field-receptive mental workspace is proposed to be communicating with the brain. Our integral nervous system is seen as a dedicated neural transmission and multi-cavity network that, in a non-dual manner, interacts with the proposed supervening meta-cognitive domain. Among others, it is integrating discrete patterns of eigen-frequencies of photonic/solitonic waves, thereby continuously updating a time-symmetric global memory space of the individual. Its toroidal organization allows the coupling of gravitational, dark energy, zero-point energy field (ZPE) as well as earth magnetic fields energies and transmits wave information into brain tissue, that thereby is instrumental in high speed conscious and sub-conscious information processing. We propose that the supposed field-receptive workspace, in a mutual interaction with the whole nervous system, generates self-consciousness and is conceived as operating from a 4th spatial dimension (hyper-sphere). Its functional structure is adequately defined by the geometry of the torus, that is envisioned as a basic unit (operator) of space-time. The latter is instrumental in collecting the pattern of discrete soliton frequencies that provided an algorithm for coherent life processes, as earlier identified by us. It is postulated that consciousness in the entire universe arises through, scale invariant, nested toroidal coupling of various energy fields, that may include quantum error correction. In the brain of the human species, this takes the form of the proposed holographic workspace, that collects active information in a "brain event horizon", representing an internal and fully integral model of the self. This brain-supervening workspace is equipped to convert integrated coherent wave energies into attractor type/standing waves that guide the related cortical template to a higher coordination of reflection and action as well as network synchronicity, as required for conscious states. In relation to its scale-invariant global character, we find support for a universal information matrix, that was extensively described earlier, as a supposed implicate order as well as in a spectrum of space-time theories in current physics. The presence of a field-receptive resonant workspace, associated with, but not reducible to, our brain, may provide an interpretation framework for widely reported, but poorly understood transpersonal conscious states and algorithmic origin of life. It also points out the deep connection of mankind with the cosmos and our major responsibility for the future of our planet.</p

    Entanglement in Many-Body Systems

    Get PDF
    The recent interest in aspects common to quantum information and condensed matter has prompted a prosperous activity at the border of these disciplines that were far distant until few years ago. Numerous interesting questions have been addressed so far. Here we review an important part of this field, the properties of the entanglement in many-body systems. We discuss the zero and finite temperature properties of entanglement in interacting spin, fermionic and bosonic model systems. Both bipartite and multipartite entanglement will be considered. At equilibrium we emphasize on how entanglement is connected to the phase diagram of the underlying model. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium we discuss how to generate and manipulate entangled states by means of many-body Hamiltonians.Comment: 61 pages, 29 figure

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore