494 research outputs found

    DeepScribe: Localization and Classification of Elamite Cuneiform Signs Via Deep Learning

    Full text link
    Twenty-five hundred years ago, the paperwork of the Achaemenid Empire was recorded on clay tablets. In 1933, archaeologists from the University of Chicago's Oriental Institute (OI) found tens of thousands of these tablets and fragments during the excavation of Persepolis. Many of these tablets have been painstakingly photographed and annotated by expert cuneiformists, and now provide a rich dataset consisting of over 5,000 annotated tablet images and 100,000 cuneiform sign bounding boxes. We leverage this dataset to develop DeepScribe, a modular computer vision pipeline capable of localizing cuneiform signs and providing suggestions for the identity of each sign. We investigate the difficulty of learning subtasks relevant to cuneiform tablet transcription on ground-truth data, finding that a RetinaNet object detector can achieve a localization mAP of 0.78 and a ResNet classifier can achieve a top-5 sign classification accuracy of 0.89. The end-to-end pipeline achieves a top-5 classification accuracy of 0.80. As part of the classification module, DeepScribe groups cuneiform signs into morphological clusters. We consider how this automatic clustering approach differs from the organization of standard, printed sign lists and what we may learn from it. These components, trained individually, are sufficient to produce a system that can analyze photos of cuneiform tablets from the Achaemenid period and provide useful transliteration suggestions to researchers. We evaluate the model's end-to-end performance on locating and classifying signs, providing a roadmap to a linguistically-aware transliteration system, then consider the model's potential utility when applied to other periods of cuneiform writing.Comment: Currently under review in the ACM JOCC

    Graph Fuzzy System: Concepts, Models and Algorithms

    Full text link
    Fuzzy systems (FSs) have enjoyed wide applications in various fields, including pattern recognition, intelligent control, data mining and bioinformatics, which is attributed to the strong interpretation and learning ability. In traditional application scenarios, FSs are mainly applied to model Euclidean space data and cannot be used to handle graph data of non-Euclidean structure in nature, such as social networks and traffic route maps. Therefore, development of FS modeling method that is suitable for graph data and can retain the advantages of traditional FSs is an important research. To meet this challenge, a new type of FS for graph data modeling called Graph Fuzzy System (GFS) is proposed in this paper, where the concepts, modeling framework and construction algorithms are systematically developed. First, GFS related concepts, including graph fuzzy rule base, graph fuzzy sets and graph consequent processing unit (GCPU), are defined. A GFS modeling framework is then constructed and the antecedents and consequents of the GFS are presented and analyzed. Finally, a learning framework of GFS is proposed, in which a kernel K-prototype graph clustering (K2PGC) is proposed to develop the construction algorithm for the GFS antecedent generation, and then based on graph neural network (GNNs), consequent parameters learning algorithm is proposed for GFS. Specifically, three different versions of the GFS implementation algorithm are developed for comprehensive evaluations with experiments on various benchmark graph classification datasets. The results demonstrate that the proposed GFS inherits the advantages of both existing mainstream GNNs methods and conventional FSs methods while achieving better performance than the counterparts.Comment: This paper has been submitted to a journa

    Semantic Domains in Akkadian Text

    Get PDF
    The article examines the possibilities offered by language technology for analyzing semantic fields in Akkadian. The corpus of data for our research group is the existing electronic corpora, Open richly annotated cuneiform corpus (ORACC). In addition to more traditional Assyriological methods, the article explores two language technological methods: Pointwise mutual information (PMI) and Word2vec.Peer reviewe

    CyberResearch on the Ancient Near East and Eastern Mediterranean

    Get PDF
    CyberResearch on the Ancient Near East and Neighboring Regions provides case studies on archaeology, objects, cuneiform texts, and online publishing, digital archiving, and preservation. Eleven chapters present a rich array of material, spanning the fifth through the first millennium BCE, from Anatolia, the Levant, Mesopotamia, and Iran. Customized cyber- and general glossaries support readers who lack either a technical background or familiarity with the ancient cultures. Edited by Vanessa Bigot Juloux, Amy Rebecca Gansell, and Alessandro Di Ludovico, this volume is dedicated to broadening the understanding and accessibility of digital humanities tools, methodologies, and results to Ancient Near Eastern Studies. Ultimately, this book provides a model for introducing cyber-studies to the mainstream of humanities research

    Studies in the Astronomy of the Roman Period, III. Planetary Epoch Tables.

    Get PDF

    Analyzing Handwritten and Transcribed Symbols in Disparate Corpora

    Get PDF
    Cuneiform tablets appertain to the oldest textual artifacts used for more than three millennia and are comparable in amount and relevance to texts written in Latin or ancient Greek. These tablets are typically found in the Middle East and were written by imprinting wedge-shaped impressions into wet clay. Motivated by the increased demand for computerized analysis of documents within the Digital Humanities, we develop the foundation for quantitative processing of cuneiform script. Using a 3D-Scanner to acquire a cuneiform tablet or manually creating line tracings are two completely different representations of the same type of text source. Each representation is typically processed with its own tool-set and the textual analysis is therefore limited to a certain type of digital representation. To homogenize these data source a unifying minimal wedge feature description is introduced. It is extracted by pattern matching and subsequent conflict resolution as cuneiform is written densely with highly overlapping wedges. Similarity metrics for cuneiform signs based on distinct assumptions are presented. (i) An implicit model represents cuneiform signs using undirected mathematical graphs and measures the similarity of signs with graph kernels. (ii) An explicit model approaches the problem of recognition by an optimal assignment between the wedge configurations of two signs. Further, methods for spotting cuneiform script are developed, combining the feature descriptors for cuneiform wedges with prior work on segmentation-free word spotting using part-structured models. The ink-ball model is adapted by treating wedge feature descriptors as individual parts. The similarity metrics and the adapted spotting model are both evaluated on a real-world dataset outperforming the state-of-the-art in cuneiform sign similarity and spotting. To prove the applicability of these methods for computational cuneiform analysis, a novel approach is presented for mining frequent constellations of wedges resulting in spatial n-grams. Furthermore, a method for automatized transliteration of tablets is evaluated by employing structured and sequential learning on a dataset of parallel sentences. Finally, the conclusion outlines how the presented methods enable the development of new tools and computational analyses, which are objective and reproducible, for quantitative processing of cuneiform script

    The material difference in human cognition

    Get PDF
    Humans leverage material forms for unique cognitive purposes: We recruit and incorporate them into our cognitive system, exploit them to accumulate and distribute cognitive effort, and use them to recreate phenotypic change in new individuals and generations. These purposes are exemplified by writing, a relatively recent tool that has become highly adept at eliciting specific psychological and behavioral responses in its users, capability it achieved by changing in ways that facilitated, accumulated, and distributed incremental behavioral and psychological change between individuals and generations. Writing is described here as a self-organizing system whose design features reflect points of maximal usefulness that emerged under sustained collective use of the tool. Such self-organization may hold insights applicable to human cognitive evolution and tool use more generally. Accordingly, this article examines the emergence of the ability to leverage material forms for cognitive purposes, using the tool-using behaviors and lithic technologies of ancestral species and contemporary non-human primates as proxies for matters like collective use, generational sustainment, and the non-teleological emergence of design features
    • …
    corecore