181 research outputs found

    Recognizing Cartesian products of matrices and polytopes

    Full text link
    The 1-product of matrices S1Rm1×n1S_1 \in \mathbb{R}^{m_1 \times n_1} and S2Rm2×n2S_2 \in \mathbb{R}^{m_2 \times n_2} is the matrix in R(m1+m2)×(n1n2)\mathbb{R}^{(m_1+m_2) \times (n_1n_2)} whose columns are the concatenation of each column of S1S_1 with each column of S2S_2. Our main result is a polynomial time algorithm for the following problem: given a matrix SS, is SS a 1-product, up to permutation of rows and columns? Our main motivation is a close link between the 1-product of matrices and the Cartesian product of polytopes, which goes through the concept of slack matrix. Determining whether a given matrix is a slack matrix is an intriguing problem whose complexity is unknown, and our algorithm reduces the problem to irreducible instances. Our algorithm is based on minimizing a symmetric submodular function that expresses mutual information in information theory. We also give a polynomial time algorithm to recognize a more complicated matrix product, called the 2-product. Finally, as a corollary of our 1-product and 2-product recognition algorithms, we obtain a polynomial time algorithm to recognize slack matrices of 22-level matroid base polytopes

    Topics in algorithmic, enumerative and geometric combinatorics

    Get PDF
    This thesis presents five papers, studying enumerative and extremal problems on combinatorial structures. The first paper studies Forman's discrete Morse theory in the case where a group acts on the underlying complex. We generalize the notion of a Morse matching, and obtain a theory that can be used to simplify the description of the G-homotopy type of a simplicial complex. As an application, we determine the S_2xS_{n-2}-homotopy type of the complex of non-connected graphs on n nodes. In the introduction, connections are drawn between the first paper and the evasiveness conjecture for monotone graph properties. In the second paper, we investigate Hansen polytopes of split graphs. By applying a partitioning technique, the number of nonempty faces is counted, and in particular we confirm Kalai's 3^d-conjecture for such polytopes. Furthermore, a characterization of exactly which Hansen polytopes are also Hanner polytopes is given. We end by constructing an interesting class of Hansen polytopes having very few faces and yet not being Hanner. The third paper studies the problem of packing a pattern as densely as possible into compositions. We are able to find the packing density for some classes of generalized patterns, including all the three letter patterns. In the fourth paper, we present combinatorial proofs of the enumeration of derangements with descents in prescribed positions. To this end, we consider fixed point lambda-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, the event that pi has descents in a set S of positions is positively correlated with the event that pi is a derangement, if pi is chosen uniformly in S_n. The fifth paper solves a partially ordered generalization of the famous secretary problem. The elements of a finite nonempty partially ordered set are exposed in uniform random order to a selector who, at any given time, can see the relative order of the exposed elements. The selector's task is to choose online a maximal element. We describe a strategy for the general problem that achieves success probability at least 1/e for an arbitrary partial order, thus proving that the linearly ordered set is at least as difficult as any other instance of the problem. To this end, we define a probability measure on the maximal elements of an arbitrary partially ordered set, that may be interesting in its own right

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) • Forbidden patterns. (János Pach) • Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) • What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants

    On some problems related to 2-level polytopes

    Get PDF
    In this thesis we investigate a number of problems related to 2-level polytopes, in particular from the point of view of the combinatorial structure and the extension complexity. 2-level polytopes were introduced as a generalization of stable set polytopes of perfect graphs, and despite their apparently simple structure, are at the center of many open problems ranging from information theory to semidefinite programming. The extension complexity of a polytope P is a measure of the complexity of representing P: it is the smallest size of an extended formulation of P, which in turn is a linear description of a polyhedron that projects down to P. In the first chapter, we examine several classes of 2-level polytopes arising in combinatorial settings and we prove a relation between the number of vertices and facets of such polytopes, which is conjectured to hold for all 2-level polytopes. The proofs are obtained through an improved understanding of the combinatorial structure of such polytopes, which in some cases leads to results of independent interest. In the second chapter, we study the extension complexity of a restricted class of 2-level polytopes, the stable set polytopes of bipartite graphs, for which we obtain non-trivial lower and upper bounds. In the third chapter we study slack matrices of 2-level polytopes, important combinatorial objects related to extension complexity, defining operations on them and giving algorithms for the following recognition problem: given a matrix, determine whether it is a slack matrix of some special class of 2-level polytopes. In the fourth chapter we address the problem of explicitly obtaining small size extended formulations whose existence is guaranteed by communication protocols. In particular we give an algorithm to write down extended formulations for the stable set polytope of perfect graphs, making a well known result by Yannakakis constructive, and we extend this to all deterministic protocols

    Extension Complexity, MSO Logic, and Treewidth

    Get PDF
    We consider the convex hull P_phi(G) of all satisfying assignments of a given MSO_2 formula phi on a given graph G. We show that there exists an extended formulation of the polytope P_phi(G) that can be described by f(|phi|,tau)*n inequalities, where n is the number of vertices in G, tau is the treewidth of G and f is a computable function depending only on phi and tau. In other words, we prove that the extension complexity of P_phi(G) is linear in the size of the graph G, with a constant depending on the treewidth of G and the formula phi. This provides a very general yet very simple meta-theorem about the extension complexity of polytopes related to a wide class of problems and graphs

    Generic symmetries of group representations

    Get PDF
    In the seventies, László Babai has classified all finite groups isomorphic to Euclidean symmetry groups of vertex transitive polytopes. In the same paper, Babai asked for a related classification of the affine symmetry groups of orbit polytopes. The present dissertation introduces an algebraic theory of "generic symmetries" of group representations which is capable not only to reprove Babai's classical result, but also to answer Babai's question.In den siebziger Jahren klassifizierte László Babai alle endlichen Gruppen, die als Euklidische Symmetriegruppen eckentransitiver Polytope entstehen. Im selben Paper fragte Babai nach einer verwandten Klassifikation aller affinen Symmetriegruppen von Orbitpolytopen. Die vorliegende Dissertation stellt eine algebraische Theorie über "generische Symmetrien" von Gruppendarstellungen vor, die nicht nur in der Lage ist, Babais Klassifikation auf neue Art zu beweisen, sondern ebenfalls eine Antwort auf Babais Frage gibt
    corecore