597 research outputs found

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Multimodal radar sensing for ambient assisted living

    Get PDF
    Data acquired from health and behavioural monitoring of daily life activities can be exploited to provide real-time medical and nursing service with affordable cost and higher efficiency. A variety of sensing technologies for this purpose have been developed and presented in the literature, for instance, wearable IMU (Inertial Measurement Unit) to measure acceleration and angular speed of the person, cameras to record the images or video sequence, PIR (Pyroelectric infrared) sensor to detect the presence of the person based on Pyroelectric Effect, and radar to estimate distance and radial velocity of the person. Each sensing technology has pros and cons, and may not be optimal for the tasks. It is possible to leverage the strength of all these sensors through information fusion in a multimodal fashion. The fusion can take place at three different levels, namely, i) signal level where commensurate data are combined, ii) feature level where feature vectors of different sensors are concatenated and iii) decision level where confidence level or prediction label of classifiers are used to generate a new output. For each level, there are different fusion algorithms, the key challenge here is mainly on choosing the best existing fusion algorithm and developing novel fusion algorithms that more suitable for the current application. The fundamental contribution of this thesis is therefore exploring possible information fusion between radar, primarily FMCW (Frequency Modulated Continuous Wave) radar, and wearable IMU, between distributed radar sensors, and between UWB impulse radar and pressure sensor array. The objective is to sense and classify daily activities patterns, gait styles and micro-gestures as well as producing early warnings of high-risk events such as falls. Initially, only “snapshot” activities (single activity within a short X-s measurement) have been collected and analysed for verifying the accuracy improvement due to information fusion. Then continuous activities (activities that are performed one after another with random duration and transitions) have been collected to simulate the real-world case scenario. To overcome the drawbacks of conventional sliding-window approach on continuous data, a Bi-LSTM (Bidirectional Long Short-Term Memory) network is proposed to identify the transitions of daily activities. Meanwhile, a hybrid fusion framework is presented to exploit the power of soft and hard fusion. Moreover, a trilateration-based signal level fusion method has been successfully applied on the range information of three UWB (Ultra-wideband) impulse radar and the results show comparable performance as using micro-Doppler signature, at the price of much less computation loads. For classifying ‘snapshot’ activities, fusion between radar and wearable shows approximately 12% accuracy improvement compared to using radar only, whereas for classifying continuous activities and gaits, our proposed hybrid fusion and trilateration-based signal level improves roughly 6.8% (before 89%, after 95.8%) and 7.3% (before 85.4%, after 92.7%), respectively

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Expressive movement generation with machine learning

    Get PDF
    Movement is an essential aspect of our lives. Not only do we move to interact with our physical environment, but we also express ourselves and communicate with others through our movements. In an increasingly computerized world where various technologies and devices surround us, our movements are essential parts of our interaction with and consumption of computational devices and artifacts. In this context, incorporating an understanding of our movements within the design of the technologies surrounding us can significantly improve our daily experiences. This need has given rise to the field of movement computing – developing computational models of movement that can perceive, manipulate, and generate movements. In this thesis, we contribute to the field of movement computing by building machine-learning-based solutions for automatic movement generation. In particular, we focus on using machine learning techniques and motion capture data to create controllable, generative movement models. We also contribute to the field by creating datasets, tools, and libraries that we have developed during our research. We start our research by reviewing the works on building automatic movement generation systems using machine learning techniques and motion capture data. Our review covers background topics such as high-level movement characterization, training data, features representation, machine learning models, and evaluation methods. Building on our literature review, we present WalkNet, an interactive agent walking movement controller based on neural networks. The expressivity of virtual, animated agents plays an essential role in their believability. Therefore, WalkNet integrates controlling the expressive qualities of movement with the goal-oriented behaviour of an animated virtual agent. It allows us to control the generation based on the valence and arousal levels of affect, the movement’s walking direction, and the mover’s movement signature in real-time. Following WalkNet, we look at controlling movement generation using more complex stimuli such as music represented by audio signals (i.e., non-symbolic music). Music-driven dance generation involves a highly non-linear mapping between temporally dense stimuli (i.e., the audio signal) and movements, which renders a more challenging modelling movement problem. To this end, we present GrooveNet, a real-time machine learning model for music-driven dance generation

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Multimodaalinen käyttöliittymä interaktiivista yhteistyötä varten nelijalkaisten robottien kanssa

    Get PDF
    A variety of approaches for hand gesture recognition have been proposed, where most interest has recently been directed towards different deep learning methods. The modalities, on which these approaches are based, most commonly range from different imaging sensors to inertial measurement units (IMU) and electromyography (EMG) sensors. EMG and IMUs allow detection of gestures without being affected by the line of sight or lighting conditions. The detection algorithms are fairly well established, but their application to real world use cases is limited, apart from prostheses and exoskeletons. In this thesis, a multimodal interface for human robot interaction (HRI) is developed for quadruped robots. The interface is based on a combination of two detection algorithms; one for detecting gestures based on surface electromyography (sEMG) and IMU signals, and the other for detecting the operator using visible light and depth cameras. Multiple architectures for gesture detection are compared, where the best regression performance with offline multi-user data was achieved by a hybrid of a convolutional neural network (CNN) and a long short-term memory (LSTM), with a mean squared error (MSE) of 4.7 · 10−3 in the normalised gestures. A person-following behaviour is implemented for a quadruped robot, which is controlled using the predefined gestures. The complete interface is evaluated online by one expert user two days after recording the last samples of the training data. The gesture detection system achieved an F-score of 0.95 for the gestures alone, and 0.90, when unrecognised attempts due to other technological aspects, such as disturbances in Bluetooth data transmission, are included. The system to reached online performance levels comparable to those reported for offline sessions and online sessions with real-time visual feedback. While the current interface was successfully deployed to the robot, further advances should be aimed at improving inter-subject performance and wireless communication reliability between the devices.Käden eleiden tunnistamiseksi on ehdotettu useita vaihtoehtoisia ratkaisuja, mutta tällä hetkellä tutkimus- ja kehitystyö on pääasiassa keskittynyt erilaisiin syvän oppimisen menetelmiin. Hyödynnetyt teknologiat vaihtelevat useimmiten kuvantavista antureista inertiamittausyksiköihin (inertial measurement unit, IMU) ja lihassähkökäyrää (electromyography, EMG) mittaaviin antureihin. EMG ja IMU:t mahdollistavat eleiden tunnistuksen riippumatta näköyhteydestä tai valaistusolosuhteista. Eleiden tunnistukseen käytettävät menetelmät ovat jo melko vakiintuneita, mutta niiden käyttökohteet ovat rajoittuneet lähinnä proteeseihin ja ulkoisiin tukirankoihin. Tässä opinnäytetyössä kehitettiin useaa modaliteettia hyödyntävä käyttöliittymä ihmisen ja robotin vuorovaikutusta varten. Käyttöliittymä perustuu kahden menetelmän yhdistelmään, joista ensimmäinen vastaa eleiden tunnistuksesta pohjautuen ihon pinnalta mitattavaan EMG:hen ja IMU-signaaleihin, ja toinen käyttäjän tunnistuksesta näkyvän valon- ja syvyyskameroiden perusteella. Työssä vertaillaan useita eleiden tunnistuksen soveltuvia arkkitehtuureja, joista parhaan tuloksen usean käyttäjän opetusaineistolla saavutti konvoluutineuroverkon (convolutional neural network, CNN) ja pitkäkestoisen lyhytkestomuistin (long short-term memory, LSTM) yhdistelmäarkkitehtuuri. Normalisoitujen eleiden regression keskimääräinen neliöllinen virhe (mean squared error, MSE) oli tällä arkkitehtuurilla 4,7·10−3. Eleitä hyödynnettiin robotille toteutetun henkilön seuraamistehtävän ohjaamisessa. Lopullinen käyttöliittymä arvioitiin yhdellä kokeneella koehenkilöllä kaksi päivää viimeisten eleiden mittaamisen jälkeen. Tällöin eleiden tunnistusjärjestelmä saavutti F-testiarvon 0,95, kun vain eleiden tunnistuksen kyvykkyys huomioitiin. Arvioitaessa koko järjestelmän toimivuutta saavutettiin F-testiarvo 0,90, jossa muun muassa Bluetooth-pohjainen tiedonsiirto heikensi tuloksia. Suoraan robottiin yhteydessä ollessaan, järjestelmän saavuttama eleiden tunnistuskyky vastasi laboratorioissa suoritettujen kokeiden suorituskykyä. Vaikka järjestelmän toiminta vahvistettiin onnistuneesti, tulee tutkimuksen jatkossa keskittyä etenkin ihmisten välisen yleistymisen parantamiseen, sekä langattoman tiedonsiirron ongelmien korjaamiseen

    Positioning and Sensing System Based on Impulse Radio Ultra-Wideband Technology

    Get PDF
    Impulse Radio Ultra-Wideband (IR-UWB) is a wireless carrier communication technology using nanosecond non-sinusoidal narrow pulses to transmit data. Therefore, the IR-UWB signal has a high resolution in the time domain and is suitable for high-precision positioning or sensing systems in IIoT scenarios. This thesis designs and implements a high-precision positioning system and a contactless sensing system based on the high temporal resolution characteristics of IR-UWB technology. The feasibility of the two applications in the IIoT is evaluated, which provides a reference for human-machine-thing positioning and human-machine interaction sensing technology in large smart factories. By analyzing the commonly used positioning algorithms in IR-UWB systems, this thesis designs an IRUWB relative positioning system based on the time of flight algorithm. The system uses the IR-UWB transceiver modules to obtain the distance data and calculates the relative position between the two individuals through the proposed relative positioning algorithm. An improved algorithm is proposed to simplify the system hardware, reducing the three serial port modules used in the positioning system to one. Based on the time of flight algorithm, this thesis also implements a contactless gesture sensing system with IR-UWB. The IR-UWB signal is sparsified by downsampling, and then the feature information of the signal is obtained by level-crossing sampling. Finally, a spiking neural network is used as the recognition algorithm to classify hand gestures

    Improving Wifi Sensing And Networking With Channel State Information

    Get PDF
    In recent years, WiFi has a very rapid growth due to its high throughput, high efficiency, and low costs. Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency-Division Multiplexing (OFDM) are two key technologies for providing high throughput and efficiency for WiFi systems. MIMO-OFDM provides Channel State Information (CSI) which represents the amplitude attenuation and phase shift of each transmit-receiver antenna pair of each carrier frequency. CSI helps WiFi achieve high throughput to meet the growing demands of wireless data traffic. CSI captures how wireless signals travel through the surrounding environment, so it can also be used for wireless sensing purposes. This dissertation presents how to improve WiFi sensing and networking with CSI. More specifically, this dissertation proposes deep learning models to improve the performance and capability of WiFi sensing and presents network protocols to reduce CSI feedback overhead for high efficiency WiFi networking. For WiFi sensing, there are many wireless sensing applications using CSI as the input in recent years. To get a better understanding of existing WiFi sensing technologies and future WiFi sensing trends, this dissertation presents a survey of signal processing techniques, algorithms, applications, performance results, challenges, and future trends of CSI-based WiFi sensing. CSI is widely used for gesture recognition and sign language recognition. Existing methods for WiFi-based sign language recognition have low accuracy and high costs when there are more than 200 sign gestures. The dissertation presents SignFi for sign language recognition using CSI and Convolutional Neural Networks (CNNs). SignFi provides high accuracy and low costs for run-time testing for 276 sign gestures in the lab and home environments. For WiFi networking, although CSI provides high throughput for WiFi networks, it also introduces high overhead. WiFi transmitters need CSI feedback for transmit beamforming and rate adaptation. The size of CSI packets is very large and it grows very fast with respect to the number of antennas and channel width. CSI feedback introduces high overhead which reduces the performance and efficiency of WiFi systems, especially mobile and hand-held WiFi devices. This dissertation presents RoFi to reduce CSI feedback overhead based on the mobility status of WiFi receivers. CSI feedback compression reduces overhead, but WiFi receivers still need to send CSI feedback to the WiFi transmitter. The dissertation presents EliMO for eliminating CSI feedback without sacrificing beamforming gains
    corecore