105 research outputs found

    Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know

    Get PDF
    Domain adaptation methods have been proposed to reduce the training efforts needed to control an upper-limb prosthesis by adapting well performing models from previous subjects to the new subject. These studies generally reported impressive reductions in the required number of training samples to achieve a certain level of accuracy for intact subjects. We further investigate two popular methods in this field to verify whether this result also applies to amputees. Our findings show instead that this improvement can largely be attributed to a suboptimal hyperparameter configuration. When hyperparameters are appropriately tuned, the standard approach that does not exploit prior information performs on par with the more complicated transfer learning algorithms. Additionally, earlier studies erroneously assumed that the number of training samples relates proportionally to the efforts required from the subject. However, a repetition of a movement is the atomic unit for subjects and the total number of repetitions should therefore be used as reliable measure for training efforts. Also when correcting for this mistake, we do not find any performance increase due to the use of prior models

    Tactile myography: an off-line assessment on intact subjects and one upper-limb disabled

    Get PDF
    Castellini C, Kõiva R, Pasluosta C, Viegas C, Eskofier BM. Tactile myography: an off-line assessment on intact subjects and one upper-limb disabled. Technologies / SI: Assistive Robotics. 2018;6(2): 38.Human-machine interfaces to control prosthetic devices still suffer from scarce dexterity and low reliability; for this reason, the community of assistive robotics is exploring novel solutions to the problem of myocontrol. In this work, we present experimental results pointing in the direction that one such method, namely Tactile Myography (TMG), can improve the situation. In particular, we use a shape-conformable high-resolution tactile bracelet wrapped around the forearm/residual limb to discriminate several wrist and finger activations performed by able-bodied subjects and a trans-radial amputee. Several combinations of features/classifiers were tested to discriminate among the activations. The balanced accuracy obtained by the best classifier/feature combination was on average 89.15% (able-bodied subjects) and 88.72% (amputated subject); when considering wrist activations only, the results were on average 98.44% for the able-bodied subjects and 98.72% for the amputee. The results obtained from the amputee were comparable to those obtained by the able-bodied subjects. This suggests that TMG is a viable technique for myoprosthetic control, either as a replacement of or as a companion to traditional surface electromyography

    Virtual sensor of surface electromyography in a new extensive fault-tolerant classification system

    Get PDF
    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior

    Towards identification of finger flexions using single channel surface electromyography - able bodied and amputee subjects

    Get PDF
    This research has established a method for using single channel surface electromyogram (sEMG) recorded from the forearm to identify individual finger flexion. The technique uses the volume conduction properties of the tissues and uses the magnitude and density of the singularities in the signal as a measure of strength of the muscle activity. Methods: SEMG was recorded from the flexor digitorum superficialis muscle during four different finger flexions. Based on the volume conduction properties of the tissues, sEMG was decomposed into wavelet maxima and grouped into four groups based on their magnitude. The mean magnitude and the density of each group were the inputs to the twin support vector machines (TSVM). The algorithm was tested on 11 able-bodied and one trans-radial amputated volunteer to determine the accuracy, sensitivity and specificity. The system was also tested to determine inter-experimental variations and variations due to difference in the electrode location. Results: Accuracy and sensitivity of identification of finger actions from single channel sEMG signal was 93% and 94% for able-bodied and 81% and 84% for trans-radial amputated respectively, and there was only a small inter-experimental variation. Conclusions: Volume conduction properties based sEMG analysis provides a suitable basis for identifying finger flexions from single channel sEMG. The reported system requires supervised training and automatic classification

    Multi-Day Analysis of Surface and Intramuscular EMG for Prosthetic Control

    Get PDF

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics

    PaWFE ::fast signal feature extraction using parallel time windows

    Get PDF
    Motivation: Hand amputations can dramatically affect the quality of life of a person. Researchers are developing surface electromyography and machine learning solutions to control dexterous and robotic prosthetic hands, however long computational times can slow down this process. Objective: This paper aims at creating a fast signal feature extraction algorithm that can extract widely used features and allow researchers to easily add new ones. Methods: PaWFE (Parallel Window Feature Extractor) extracts the signal features from several time windows in parallel. The MATLAB code is publicly available and supports several time domain and frequency features. The code was tested and benchmarked using 1,2,4,8,16,32, and 48 threads on a server with four Xeon E7- 4820 and 128 GB RAM using the first 5 datasets of the Ninapro database, that are recorded with different acquisition setups. Results: The parallel time window analysis approach allows to reduce the computational time up to 20 times when using 32 cores, showing a very good scalability. Signal features can be extracted in few seconds from an entire data acquisition and in <100ms from a single time window, easily reducing of up to over 15 times the feature extraction procedure in comparison to traditional approaches. The code allows users to easily add new signal feature extraction scripts, that can be added to the code and on the Ninapro website upon request. Significance: The code allows researchers in machine learning and biosignals data analysis to easily and quickly test modern machine learning approaches on big datasets and it can be used as a resource for real time data analysis too
    corecore