508 research outputs found

    An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach

    Full text link
    Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97+-1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1+-0.9% on the University of Bonn dataset.Comment: 18 page

    Novel Feature Extraction Methodology with Evaluation in Artificial Neural Networks Based Fingerprint Recognition System

    Get PDF
    Fingerprint recognition is one of the most common biometric recognition systems that includes feature extraction and decision modules. In this work, these modules are achieved via artificial neural networks and image processing operations. The aim of the work is to define a new method that requires less computational load and storage capacity, can be an alternative to existing methods, has high fault tolerance, convenient for fraud measures, and is suitable for development. In order to extract the feature points called minutia points of each fingerprint sample, Multilayer Perceptron algorithm is used. Furthermore, the center of the fingerprint is also determined using an improved orientation map. The proposed method gives approximate position information of minutiae points with respect to the core point using a fairly simple, orientation map-based method that provides ease of operation, but with the use of artificial neurons with high fault tolerance, this method has been turned to an advantage. After feature extraction, General Regression Neural Network is used for identification. The system algorithm is evaluated in UPEK and FVC2000 database. The accuracies without rejection of bad images for the database are 95.57% and 91.38% for UPEK and FVC2000 respectively

    Predicting 3D lip shapes using facial surface EMG

    Get PDF
    Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions. Materials and methods With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA) and a modified general regression neural network (GRNN) to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG. Conclusions The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence

    Detecting Anomalies From Big Data System Logs

    Get PDF
    Nowadays, big data systems (e.g., Hadoop and Spark) are being widely adopted by many domains for offering effective data solutions, such as manufacturing, healthcare, education, and media. A common problem about big data systems is called anomaly, e.g., a status deviated from normal execution, which decreases the performance of computation or kills running programs. It is becoming a necessity to detect anomalies and analyze their causes. An effective and economical approach is to analyze system logs. Big data systems produce numerous unstructured logs that contain buried valuable information. However manually detecting anomalies from system logs is a tedious and daunting task. This dissertation proposes four approaches that can accurately and automatically analyze anomalies from big data system logs without extra monitoring overhead. Moreover, to detect abnormal tasks in Spark logs and analyze root causes, we design a utility to conduct fault injection and collect logs from multiple compute nodes. (1) Our first method is a statistical-based approach that can locate those abnormal tasks and calculate the weights of factors for analyzing the root causes. In the experiment, four potential root causes are considered, i.e., CPU, memory, network, and disk I/O. The experimental results show that the proposed approach is accurate in detecting abnormal tasks as well as finding the root causes. (2) To give a more reasonable probability result and avoid ad-hoc factor weights calculating, we propose a neural network approach to analyze root causes of abnormal tasks. We leverage General Regression Neural Network (GRNN) to identify root causes for abnormal tasks. The likelihood of reported root causes is presented to users according to the weighted factors by GRNN. (3) To further improve anomaly detection by avoiding feature extraction, we propose a novel approach by leveraging Convolutional Neural Networks (CNN). Our proposed model can automatically learn event relationships in system logs and detect anomaly with high accuracy. Our deep neural network consists of logkey2vec embeddings, three 1D convolutional layers, a dropout layer, and max pooling. According to our experiment, our CNN-based approach has better accuracy compared to other approaches using Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) on detecting anomaly in Hadoop DistributedFile System (HDFS) logs. (4) To analyze system logs more accurately, we extend our CNN-based approach with two attention schemes to detect anomalies in system logs. The proposed two attention schemes focus on different features from CNN\u27s output. We evaluate our approaches with several benchmarks, and the attention-based CNN model shows the best performance among all state-of-the-art methods

    Extracting Relational Triples Based on Graph Recursive Neural Network via Dynamic Feedback Forest Algorithm

    Full text link
    Extracting relational triples (subject, predicate, object) from text enables the transformation of unstructured text data into structured knowledge. The named entity recognition (NER) and the relation extraction (RE) are two foundational subtasks in this knowledge generation pipeline. The integration of subtasks poses a considerable challenge due to their disparate nature. This paper presents a novel approach that converts the triple extraction task into a graph labeling problem, capitalizing on the structural information of dependency parsing and graph recursive neural networks (GRNNs). To integrate subtasks, this paper proposes a dynamic feedback forest algorithm that connects the representations of subtasks by inference operations during model training. Experimental results demonstrate the effectiveness of the proposed method

    Automatic detection of early repolarization pattern in ECG signals with waveform prototype-based learning

    Get PDF
    Abstract. Early repolarization (ER) pattern was considered a benign finding until 2008, when it was associated with sudden cardiac arrest (SCA). Since then, the interest of the medical community on the topic has grown, stating the need to develop methods to detect the pattern and analyze the risk of SCA. This thesis presents an automatic detection method of ER using supervised classification. The novelty of the method lies in the features used to construct the classification models. The features consist of prototypes that are composed by fragments of the ECG signal where the ER pattern is located. Three different classifier models were included and compared: linear discriminant analysis (LDA), k-nearest neighbor (KNN) algorithm and support vector machine (SVM). The method was tested in a dataset of 5676 subjects, manually labeled by an experienced analyst who followed the medical guidelines. The algorithm for the detection of ER is composed of different stages. First, the ECG signals are processed to locate characteristic points and remove unwanted noise. Then, the features are extracted from the signals and the classifiers are trained. Finally, the results are fused and the detection of ER is evaluated. Accuracies of the different classifiers showed results over 90%, demonstrating the discrimitative power of the features between ECG signals with and without the ER pattern. Additionally, dimensionality reduction of the features was implemented with Isomap and generalized regression neural networks (GRNN) without affecting the performance of the method. Moreover, analysis of critical cases that are difficult to label was performed based on the distances to the classifier decision boundary, improving the sensitivity of the detection. Hence, the method presented here could be used to discriminate between ECG signals with and without the ER pattern
    corecore