4,693 research outputs found

    Recognition of occluded objects using curvature

    Get PDF
    New approaches of object representation reliable for partially occluded objects recognition are introduced in this article. Objects are represented by their boundaries, which are deformed by the occlusion. The boundary representation was made by approximation with circle arcs. The representation was designed to be local and robust to occlusion. The curve approximation with circle arcs is equivalent to the curvature representation with respect to noise. The algorithm is simple and easy to implement. Experimental results are presented

    Grasping unknown objects in clutter by superquadric representation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, a quick and efficient method is presented for grasping unknown objects in clutter. The grasping method relies on real-time superquadric (SQ) representation of partial view objects and incomplete object modelling, well suited for unknown symmetric objects in cluttered scenarios which is followed by optimized antipodal grasping. The incomplete object models are processed through a mirroring algorithm that assumes symmetry to first create an approximate complete model and then fit for SQ representation. The grasping algorithm is designed for maximum force balance and stability, taking advantage of the quick retrieval of dimension and surface curvature information from the SQ parameters. The pose of the SQs with respect to the direction of gravity is calculated and used together with the parameters of the SQs and specification of the gripper, to select the best direction of approach and contact points. The SQ fitting method has been tested on custom datasets containing objects in isolation as well as in clutter. The grasping algorithm is evaluated on a PR2 robot and real time results are presented. Initial results indicate that though the method is based on simplistic shape information, it outperforms other learning based grasping algorithms that also work in clutter in terms of time-efficiency and accuracy.Peer ReviewedPostprint (author's final draft

    Recognition of partially occluded threat objects using the annealed Hopefield network

    Get PDF
    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features

    Robust 3-Dimensional Object Recognition using Stereo Vision and Geometric Hashing

    Get PDF
    We propose a technique that combines geometric hashing with stereo vision. The idea is to use the robustness of geometric hashing to spurious data to overcome the correspondence problem, while the stereo vision setup enables direct model matching using the 3-D object models. Furthermore, because the matching technique relies on the relative positions of local features, we should be able to perform robust recognition even with partially occluded objects. We tested this approach with simple geometric objects using a corner point detector. We successfully recognized objects even in scenes where the objects were partially occluded by other objects. For complicated scenes, however, the limited set of model features and required amount of computing time, sometimes became a proble

    Automatic Objects Removal for Scene Completion

    Get PDF
    With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as 3D scene reconstruction and other big data applications. However, this is not an easy task due to the fact the retrieved photos are neither aligned nor calibrated. Furthermore, with the occlusion of unexpected foreground objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct realistic scenes. In this paper, we propose a structure based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to the natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing: 3D scene reconstruction and location recognition.Comment: 6 pages, IEEE International Conference on Computer Communications (INFOCOM 14), Workshop on Security and Privacy in Big Data, Toronto, Canada, 201
    • …
    corecore