12,873 research outputs found

    Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition

    Full text link
    Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using off-the-shelf neural network components and only word-level annotations. It is composed of a 3131-layer ResNet, an LSTM-based encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust and achieves state-of-the-art performance on both regular and irregular scene text recognition benchmarks. Code is available at: https://tinyurl.com/ShowAttendReadComment: Accepted to Proc. AAAI Conference on Artificial Intelligence 201

    Real-time Scene Text Detection with Differentiable Binarization

    Full text link
    Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for segmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DBComment: Accepted to AAAI 202

    READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

    Full text link
    Text line detection is crucial for any application associated with Automatic Text Recognition or Keyword Spotting. Modern algorithms perform good on well-established datasets since they either comprise clean data or simple/homogeneous page layouts. We have collected and annotated 2036 archival document images from different locations and time periods. The dataset contains varying page layouts and degradations that challenge text line segmentation methods. Well established text line segmentation evaluation schemes such as the Detection Rate or Recognition Accuracy demand for binarized data that is annotated on a pixel level. Producing ground truth by these means is laborious and not needed to determine a method's quality. In this paper we propose a new evaluation scheme that is based on baselines. The proposed scheme has no need for binarization and it can handle skewed as well as rotated text lines. The ICDAR 2017 Competition on Baseline Detection and the ICDAR 2017 Competition on Layout Analysis for Challenging Medieval Manuscripts used this evaluation scheme. Finally, we present results achieved by a recently published text line detection algorithm.Comment: Submitted to DAS201

    Cascaded Segmentation-Detection Networks for Word-Level Text Spotting

    Full text link
    We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000-by-560 image on a Titan X GPU, our system achieves the highest score to date among published algorithms on the ICDAR 2015 Incidental Scene Text dataset benchmark.Comment: 7 pages, 8 figure

    MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild

    Full text link
    Detecting small scene text instances in the wild is particularly challenging, where the influence of irregular positions and nonideal lighting often leads to detection errors. We present MixNet, a hybrid architecture that combines the strengths of CNNs and Transformers, capable of accurately detecting small text from challenging natural scenes, regardless of the orientations, styles, and lighting conditions. MixNet incorporates two key modules: (1) the Feature Shuffle Network (FSNet) to serve as the backbone and (2) the Central Transformer Block (CTBlock) to exploit the 1D manifold constraint of the scene text. We first introduce a novel feature shuffling strategy in FSNet to facilitate the exchange of features across multiple scales, generating high-resolution features superior to popular ResNet and HRNet. The FSNet backbone has achieved significant improvements over many existing text detection methods, including PAN, DB, and FAST. Then we design a complementary CTBlock to leverage center line based features similar to the medial axis of text regions and show that it can outperform contour-based approaches in challenging cases when small scene texts appear closely. Extensive experimental results show that MixNet, which mixes FSNet with CTBlock, achieves state-of-the-art results on multiple scene text detection datasets
    • …
    corecore