674 research outputs found

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft

    A nonparametric Bayesian compressive sensing classification

    Get PDF
    This paper presents a novel non-parametric back-propagation Bayesian compressive sensing (BBCS) classification approach. While the state-of-the-art parametric classifiers such as logistic regression require model training and can result in inadequate models, the developed approach does not require model training. It is combined with a column-based subspace sampling process and it can deal efficiently with uncertainties and highly computational tasks. Validation on a publicly available vehicle logo dataset shows that the proposed classifier can achieve up to 98% recognition accuracy as compared with the state-of-the-art non-parametric classifiers. Compared with the generic Bayesian compressive sensing classification, the proposed approach decreases the mean number of misclassifications by 87% and with 68% reduction of the computational time. The robustness of the BBCS approach is demonstrated over scene recognition tasks, and its outperformance over the AlexNet convolutional neural networks algorithm is demonstrated in noisy conditions. The proposed BBCS approach is generic and can be used in different areas, for example, it has shown robustness over the CIFAR-10 dataset

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Video tolling integrated solution

    Get PDF
    Trabalho de projeto de mestrado, Engenharia Informática (Engenharia de Software) Universidade de Lisboa, Faculdade de Ciências, 2020A indústria de cobrança de portagens foi instituída no século VII com o intuito de financiar e auxiliar na manutenção de vias públicas através do pagamento de taxas correspondentes ao seu uso. Contudo, o advento do uso massificado de veículos automóveis, e consequente aumento do tráfego, obrigou à adaptação desta indústria aos tempos modernos, tendo sido introduzida uma filosofia de livre trânsito complementar à tradicional paragem para pagamento. A adoção deste tipo de medida foi possível graças ao desenvolvimento de tecnologias de reconhecimento ótico de caracteres, que permitem a identificação da matrícula, aliados ao uso de identificadores registados para cada veículo. Porém, a ausência de paragem implica também a existência de infrações de condutores que circulem com matrículas obscurecidas ou de difícil leitura. Deste modo, é desejável o uso de métodos complementares de auxílio à identificação dos veículos, caso do reconhecimento da marca e modelo dos mesmos (MMR). Os sistemas de reconhecimento ótico de caracteres com o objetivo de identificar matrículas são já implementados nas soluções concebidas pela Accenture para os seus diversos clientes na área, tornando estes novos métodos complementares numa adição interessante à robustez dos mesmos, de modo a reduzir custos adicionais relacionados com a identificação manual de matrículas através das imagens captadas. O presente trabalho visou então, em primeira instância, o estabelecimento de uma prova de conceito com um modelo arquitetural que permitisse a integração de um sistema de reconhecimento de marca e modelo de veículos com os sistemas informáticos previamente desenvolvidos e que se encontram atualmente em uso por parte dos clientes. Para este modelo foi também estabelecido um conjunto de requisitos, tanto funcionais como não funcionais, com o intuito de minorar, tanto quanto possível, perdas no desempenho e fiabilidade dos atuais sistemas por consequência da introdução deste novo componente de MMR. Os requisitos foram definidos fazendo uso de uma versão modificada do modelo de qualidade FURPS, segundo as boas práticas definidas pela equipa de desenvolvimento do Centro de Excelência de Tolling (TCoE) da Accenture Portugal. Adicionalmente, os requisitos definidos foram sujeitos ao estabelecimento de prioridades segundo as regras MoSCoW. A captura de imagens de veículos em movimento e consequente classificação oferece desafios inerentes à sua complexidade, pelo que foram também efetuadas considerações sobre os fatores de variabilidade que devem ser tidos em conta aquando da conceção de um sistema MMR. Estes fatores foram classificados segundo três áreas principais: propriedades inerentes ao sistema de captura de imagens (RSE), propriedades do evento de captura da imagem, e propriedades do veículo. A arquitetura proposta para um eventual sistema que possa ser passível de integração com os existentes faz uso da arquitetura dos mesmos, organizando-se em quatro camadas, a saber: acesso a dados (camada inferior), gestão e regras de negócio, avaliação de resultados e aumento da base de conhecimento disponível, e correspondência (camada superior). Para a elaboração da presente prova de conceito, foram deste modo escolhidas tecnologias que permitem a integração com os sistemas Java previamente existentes sem despender demasiado esforço adicional nessa integração. Deste modo, foram utilizadas bibliotecas Python para o uso de OpenCV, que permite o processamento de imagens, e Tensorflow para as atividades relacionadas com machine learning. O desenvolvimento da prova de conceito para estes sistemas envolveu também o teste de hipóteses quanto ao modo mais vantajoso de reconhecimento da marca e modelo dos veículos propriamente dita. Para este efeito, foram equacionadas três hipóteses, que se basearam no uso de dois datasets distintos. O primeiro conceito abordado consistiu em fingerprinting de imagens associadas a um dataset desenvolvido na Universidade de Stanford, contendo 16185 imagens de veículos automóveis ligeiros em variadas poses, que podem ser divididas segundo 49 marcas e 196 modelos distintos, se for considerada a distinção dos anos de comercialização dos mesmos. Para o efeito, foi usado o modelo de características AKAZE e testados três métodos distintos para efetuar as correspondências: força bruta com teste de rácio descrito na literatura (para dois rácios distintos, 0,4 e 0,7), força bruta com recurso a função de cross-check nativa das bibliotecas usadas, e FLANN. A pertença de uma imagem a determinada categoria foi então ditada pelo estabelecimento de correspondências entre os seus pontos-chave e os pontos-chave das imagens do dataset, testando vários algoritmos de ordenação para aumentar as probabilidades de correspondência com uma imagem pertencente à mesma classe. Os resultados obtidos demonstraram, no geral, precisões relativamente baixas, sendo que nenhuma ultrapassou os 20% para o reconhecimento da marca ou modelo dos veículos. Contudo, dos ensaios efetuados, dois destacaram-se ao conseguir atingir 16,8% de precisão para a marca e 11,2% para o modelo. Estes ensaios tiveram, de resto, características em comum, sendo que, em ambos os casos, foi utilizado o método de força bruta com rácio de 0,4. Os métodos de ordenação de resultados foram, todavia, diferentes, sendo que num dos casos foi usado o valor máximo de pontos-chave em comum (MV) e no segundo um rácio entre este número de pontos em comum e o número de pontos-chave existentes (MR). De entre ambos, o ensaio que recorreu ao método MR foi considerado estatisticamente mais significativo, dado possuir um valor do coeficiente de correlação k de Cohen mais elevado em relação a MV. Os parcos resultados obtidos através deste método levaram à tentativa de adoção de uma abordagem diferente, nomeadamente no que tocava à seleção das imagens que deviam ser comparadas, uma vez que os fatores de variabilidade identificados na análise se encontravam demasiado presentes nas imagens do dataset de Stanford. Deste modo, a grelha do veículo foi identificada como região de interesse (ROI), dados os padrões distintivos inerentes à mesma e a presença do logotipo identificador da marca à qual pertence o veículo. O objetivo desta nova abordagem residia na identificação desta ROI de modo a proceder à sua extração a partir da imagem original, aplicando-sedepois os algoritmos de fingerprinting anteriormente abordados. A deteção da ROI foi efetuada com recurso a classificadores em cascata, os quais foram testados com dois tipos de características diferentes: LBP, mais rápidas, mas menos precisas, e Haar, mais complexas, mas também mais fiáveis. As imagens obtidas através da identificação e subsequente recorte foram depois analisadas segundo a presença de grelha, deteção da mesma ou de outros objetos, bem como o grau de perfeição da deteção efetuada. A determinação da ROI a recortar foi também avaliada segundo dois algoritmos: número total de interseções entre ROIs candidatas, e estabelecimento de um limiar de candidatos para uma ROI candidata ser considerada ou rejeitada (apelidado de min-neighbours). As cascatas foram treinadas com recurso a imagens não pertencentes ao dataset de Stanford, de modo a evitar classificações tendenciosas face a imagens previamente apresentadas ao modelo, e para cada tipo de característica foram apresentados dois conjuntos de imagens não correspondentes a grelhas (amostras negativas), que diferiam na sua dimensão e foram consequentemente apelidadas de Nsmall e Nbig. Os melhores resultados foram obtidos com o dataset Nsmall, estabelecimento de limiar, e com recurso a características Haar, sendo a grelha detetada em 81,1% dos casos em que se encontrava efetivamente presente na imagem. Contudo, esta deteção não era completamente a que seria desejável, uma vez que, considerando deteção perfeita e sem elementos externos, a precisão baixava para 32,3%. Deste modo, apesar das variadas vertentes em que esta deteção e extração de ROI foi estudada, foi decidido não avançar para o uso de fingerprinting, devido a constrangimentos de tempo e à baixa precisão que o sistema como um todo conseguiria alcançar. A última técnica a ser testada neste trabalho foi o uso de redes neuronais de convolução (CNN). Para o efeito, e de modo a obter resultados mais fiáveis para o tipo de imagem comumente capturado pelos RSE em contexto de open road tolling, foi usado um novo dataset, consistindo de imagens captadas em contexto real e cedidas por um dos clientes do TCoE. Dentro deste novo conjunto de imagens, foi feita a opção de testar apenas a marca do veículo, com essa classificação a ser feita de forma binária (pertence ou não pertence a determinada marca), ao invés de classificação multi-classe. Para o efeito, foram consideradas as marcas mais prevalentes no conjunto fornecido, Opel e Peugeot. Os primeiros resultados para o uso de CNN revelaram-se promissores, com precisão de 88,9% para a marca Opel e 95,3% para a Peugeot. Todavia, ao serem efetuados testes de validação cruzada para aferir o poder de generalização dos modelos, verificou-se um decréscimo significativo, tanto para Opel (79,3%) como para Peugeot (84,9%), deixando antever a possibilidade de ter ocorrido overfitting na computação dos modelos. Por este motivo, foram efetuados novos ensaios com imagens completamente novas para cada modelo, sendo obtidos resultados de 55,7% para a marca Opel e 57,4% para a marca Peugeot. Assim, embora longe de serem resultados ideais, as CNN aparentam ser a melhor via para um sistema integrado de reconhecimento de veículos, tornando o seu refinamento e estudo numa solução viável para a continuação de um possível trabalho nesta área.For a long time, tolling has served as a way to finance and maintain publicly used roads. In recent years, however, due to generalised vehicle use and consequent traffic demand, there has been a call for open-road tolling solutions, which make use of automatic vehicle identification systems which operate through the use of transponders and automatic license plate recognition. In this context, recognising the make and model of a vehicle (MMR) may prove useful, especially when dealing with infractions. Intelligent automated license plate recognition systems have already been adopted by several Accenture clients, with this new feature being a potential point of interest for future developments. Therefore, the current project aimed to establish a potential means of integrating such a system with the already existing architecture, with requirements being designed to ensure its current reliability and performance would suffer as little an impact as possible. Furthermore, several options were considered as candidates for the future development of an integrated MMR solution, namely, image fingerprinting of a whole image, grille selection followed by localised fingerprinting, and the use of convolutional neural networks (CNN) for image classification. Among these, CNN showed the most promising results, albeit making use of images in limited angle ranges, therefore mimicking those exhibited in captured tolling vehicle images, as well as performing binary classification instead of a multi-class one. Consequently, further work in this area should take these results into account and expand upon them, refining these models and introducing more complexity in the process

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models
    corecore