200 research outputs found

    Structural textile pattern recognition and processing based on hypergraphs

    Full text link
    The humanities, like many other areas of society, are currently undergoing major changes in the wake of digital transformation. However, in order to make collection of digitised material in this area easily accessible, we often still lack adequate search functionality. For instance, digital archives for textiles offer keyword search, which is fairly well understood, and arrange their content following a certain taxonomy, but search functionality at the level of thread structure is still missing. To facilitate the clustering and search, we introduce an approach for recognising similar weaving patterns based on their structures for textile archives. We first represent textile structures using hypergraphs and extract multisets of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting multisets are clustered using various distance measures and various clustering algorithms (K-Means for simplicity and hierarchical agglomerative algorithms for precision). We evaluate the different variants of our approach experimentally, showing that this can be implemented efficiently (meaning it has linear complexity), and demonstrate its quality to query and cluster datasets containing large textile samples. As, to the best of our knowledge, this is the first practical approach for explicitly modelling complex and irregular weaving patterns usable for retrieval, we aim at establishing a solid baseline

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    ICR ANNUAL REPORT 2020 (Volume 27)[All Pages]

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Fourteenth Biennial Status Report: MĂ€rz 2017 - February 2019

    No full text

    Analyse de forme appliquée à des modÚles CAO B-Rep pour extraire des symétries locales et globales

    No full text
    Symmetry properties of objects described as B-Rep CAD models are analyzed locally as well as globally through an approach of type divide-and-conquer. The boundary of the object is defined using canonical surfaces frequently used when shaping mechanical components. Then, the first phase consists in generating maximal faces and edges that are independent from the object modelling process but that preserve its symmetry properties. These faces and edges form infinite sets of points that are processed globally. The second phase is the division one that creates candidate symmetry planes and axes attached to the previous maximal edges and faces. Finally, comes the propagation step of these candidate symmetry planes and axes forming the conquer phase that determines the local as well as the global symmetries of the object while characterizing its asymmetric areas.Les propriĂ©tĂ©s de symĂ©trie d'un objet reprĂ©sentĂ© sous la forme d'un modĂšle B-Rep CAO sont analysĂ©es localement et globalement Ă  travers une approche de type diviser pour conquĂ©rir. La surface frontiĂšre de l'objet est dĂ©crite Ă  partir de surfaces canoniques frĂ©quemment utilisĂ©es dans les formes de composants mĂ©caniques. La premiĂšre phase de l'analyse consiste en la gĂ©nĂ©ration de faces et d'arĂȘtes maximales indĂ©pendantes du processus de modĂ©lisation de l'objet mais prĂ©servant ses propriĂ©tĂ©s de symĂ©trie. Ces faces et arĂȘtes constituent des ensembles infinis de points traitĂ©s globalement. La seconde phase est l'Ă©tape de division consistant en la crĂ©ation de plan et axes de symĂ©trie de candidats pour les faces et arĂȘtes maximales gĂ©nĂ©rĂ©es prĂ©cĂ©demment. Enfin, suit l'Ă©tape de propagation de ces plans et axes de symĂ©trie reprĂ©sentant la phase de conquĂȘte et dĂ©terminant les propriĂ©tĂ©s de symĂ©trie locales et globales de l'objet et caractĂ©risant ses zones non-symĂ©triques

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all
    • 

    corecore