2,486 research outputs found

    From line geometry to area topology

    Get PDF
    CISRG discussion paper ;

    Shape Evolution With Structural and Topological Changes Using Blending

    Get PDF
    This paper describes a framework for the estimation of shape from sparse or incomplete range data. It uses a shape representation called blending, which allows for the geometric combination of shapes into a unified model— selected regions of the component shapes are cut-out and glued together. Estimation of shape using this representation is realized using a physics-based framework, and also includes a process for deciding how to adapt the structure and topology of the model to improve the fit. The blending representation helps avoid abrupt changes in model geometry during fitting by allowing the smooth evolution of the shape, which improves the robustness of the technique. We demonstrate this framework with a series of experiments showing its ability to automatically extract structured representations from range data given both structurally and topologically complex objects

    Topological Equivalence and Similarity in Multi-Representation Geographic Databases

    Get PDF
    Geographic databases contain collections of spatial data representing the variety of views for the real world at a specific time. Depending on the resolution or scale of the spatial data, spatial objects may have different spatial dimensions, and they may be represented by point, linear, or polygonal features, or combination of them. The diversity of data that are collected over the same area, often from different sources, imposes a question of how to integrate and to keep them consistent in order to provide correct answers for spatial queries. This thesis is concerned with the development of a tool to check topological equivalence and similarity for spatial objects in multi-representation databases. The main question is what are the components of a model to identify topological consistency, based on a set of possible transitions for the different types of spatial representations. This work develops a new formalism to model consistently spatial objects and spatial relations between several objects, each represented at multiple levels of detail. It focuses on the topological consistency constraints that must hold among the different representation of objects, but it is not concerned about generalization operations of how to derive one representation level from another. The result of this thesis is a?computational tool to evaluate topological equivalence and similarity across multiple representations. This thesis proposes to organize a spatial scene -a set of spatial objects and their embeddings in space- directly as a relation-based model that uses a hierarchical graph representation. The focus of the relation-based model is on relevant object representations. Only the highest-dimensional object representations are explicitly stored, while their parts are not represented in the graph

    A microcomputer-based vision system to recognize and locate partially occluded parts in binary and gray level images

    Get PDF
    This paper presents a microcomputer-based machine vision system to recognize and locate partially occluded parts in binary or gray level images. The recognition process is restricted to untilted, two-dimensional objects;A new edge-tracking technique in conjunction with a straight-line approximation algorithm is used to identify the local features in an image. Corners and holes serve as local features. The local features identified in an image are matched against all the compatible features stored for the model parts. The algorithm computes, for all image and model features matches, a coordinate transformation that maps a model feature onto an image feature. A new clustering algorithm has been developed to identify consistent coordinate transformation clusters that serve as initial match hypotheses. A hypothesis verification process eliminates the match hypotheses that are not compatible with the image information;The system performance was compared to a vision system restricted to recognize nonoverlapping parts. Both systems require the same hardware configuration and share the basic image processing routines

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization

    Get PDF
    The primary aim of this paper is to illustrate the value of visualization in cartography and to indicate that tools for the generation and manipulation of realistic images are of limited value within this application. This paper demonstrates the value of visualization within one problem in cartography, namely the generalisation of lines. It reports on the evaluation of the Douglas-Peucker algorithm for line simplification. Visualization of the simplification process and of the results suggest that the mathematical measures of performance proposed by some other researchers are inappropriate, misleading and questionable
    • …
    corecore