24,142 research outputs found

    Detection and Recognition of Traffic Signs Inside the Attentional Visual Field of Drivers

    Get PDF
    Traffic sign detection and recognition systems are essential components of Advanced Driver Assistance Systems and self-driving vehicles. In this contribution we present a vision-based framework which detects and recognizes traffic signs inside the attentional visual field of drivers. This technique takes advantage of the driver\u27s 3D absolute gaze point obtained through the combined use of a front-view stereo imaging system and a non-contact 3D gaze tracker. We used a linear Support Vector Machine as a classifier and a Histogram of Oriented Gradient as features for detection. Recognition is performed by using Scale Invariant Feature Transforms and color information. Our technique detects and recognizes signs which are in the field of view of the driver and also provides indication when one or more signs have been missed by the driver

    Assessment of Driver\u27s Attention to Traffic Signs through Analysis of Gaze and Driving Sequences

    Get PDF
    A driver’s behavior is one of the most significant factors in Advance Driver Assistance Systems. One area that has received little study is just how observant drivers are in seeing and recognizing traffic signs. In this contribution, we present a system considering the location where a driver is looking (points of gaze) as a factor to determine that whether the driver has seen a sign. Our system detects and classifies traffic signs inside the driver’s attentional visual field to identify whether the driver has seen the traffic signs or not. Based on the results obtained from this stage which provides quantitative information, our system is able to determine how observant of traffic signs that drivers are. We take advantage of the combination of Maximally Stable Extremal Regions algorithm and Color information in addition to a binary linear Support Vector Machine classifier and Histogram of Oriented Gradients as features detector for detection. In classification stage, we use a multi class Support Vector Machine for classifier also Histogram of Oriented Gradients for features. In addition to the detection and recognition of traffic signs, our system is capable of determining if the sign is inside the attentional visual field of the drivers. It means the driver has kept his gaze on traffic signs and sees the sign, while if the sign is not inside this area, the driver did not look at the sign and sign has been missed

    NIGHT-TIME ANIMAL RECOGNITION SYSTEM USING DIGITAL IMAGE PROCESSING

    Get PDF
    Animal-related accidents always haunted the road users in Malaysia. Victims and animals involved in animal-related accidents are either injured or lost their lives. This project proposes to develop a buffalo detection system to alert drivers by using the image processing technique during night-time. With this system, drivers will be able to have sufficient time to avoid collision with the animals. Various MATLAB image processing techniques are used to perform the buffalo recognition in this project

    Developing Predictive Models of Driver Behaviour for the Design of Advanced Driving Assistance Systems

    Get PDF
    World-wide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error. The main objective of this research is to develop a predictive system for driving maneuvers by analyzing the cognitive behavior (cephalo-ocular) and the driving behavior of the driver (how the vehicle is being driven). Advanced Driving Assistance Systems (ADAS) include different driving functions, such as vehicle parking, lane departure warning, blind spot detection, and so on. While much research has been performed on developing automated co-driver systems, little attention has been paid to the fact that the driver plays an important role in driving events. Therefore, it is crucial to monitor events and factors that directly concern the driver. As a goal, we perform a quantitative and qualitative analysis of driver behavior to find its relationship with driver intentionality and driving-related actions. We have designed and developed an instrumented vehicle (RoadLAB) that is able to record several synchronized streams of data, including the surrounding environment of the driver, vehicle functions and driver cephalo-ocular behavior, such as gaze/head information. We subsequently analyze and study the behavior of several drivers to find out if there is a meaningful relation between driver behavior and the next driving maneuver

    IVVI: Intelligent vehicle based on visual information

    Get PDF
    Human errors are the cause of most traffic accidents, with drivers’ inattention and wrong driving decisions being the two main sources. These errors can be reduced, but not completely eliminated. That is why Advanced Driver Assistance Systems (ADAS) can reduce the number, danger and severity of traffic accidents. Several ADAS, which nowadays are being researched for Intelligent vehicles, are based on Artificial Intelligence and Robotics technologies. In this article a research platform for the implementation of systems based on computer vision is presented, and different visual perception modules useful for some ADAS such as Line Keeping System, Adaptive Cruise Control, Pedestrian Protector, or Speed Supervisor, are described.This work was supported in part by the Spanish government under CICYT grant TRA2004-07441-C03-01

    Visual Analysis in Traffic & Re-identification

    Get PDF

    Global localization of vertical road signs using a car equipped with a stereo vision system and GPS

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Automação). Universidade do Porto. Faculdade de Engenharia. 201

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    Going Deeper with Convolutional Neural Network for Intelligent Transportation

    Get PDF
    Over last several decades, computer vision researchers have been devoted to find good feature to solve different tasks, object recognition, object detection, object segmentation, activity recognition and so forth. Ideal features transform raw pixel intensity values to a representation in which these computer vision problems are easier to solve. Recently, deep feature from covolutional neural network(CNN) have attracted many researchers to solve many problems in computer vision. In the supervised setting, these hierarchies are trained to solve specific problems by minimizing an objective function for different tasks. More recently, the feature learned from large scale image dataset have been proved to be very effective and generic for many computer vision task. The feature learned from recognition task can be used in the object detection task. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. We begin by summarize some related prior works, particularly the paper in object recognition, object detection and segmentation. We introduce the deep feature to computer vision task in intelligent transportation system. First, we apply deep feature in object detection task, especially in vehicle detection task. Second, to make fully use of objectness proposals, we apply proposal generator on road marking detection and recognition task. Third, to fully understand the transportation situation, we introduce the deep feature into scene understanding in road. We experiment each task for different public datasets, and prove our framework is robust
    • …
    corecore