71 research outputs found

    Investigation Of Green Strawberry Detection Using R-Cnn With Various Architectures

    Get PDF
    Traditional image processing solutions have been applied in the past to detect and count strawberries. These methods typically involve feature extraction followed by object detection using one or more features. Some object detection problems can be ambiguous as to what features are relevant and the solutions to many problems are only fully realized when the modern approach has been applied and tested, such as deep learning. In this work, we investigate the use of R-CNN for green strawberry detection. The object detection involves finding regions of interest (ROIs) in field images using the selective segmentation algorithm and inputting these regions into a pre-trained deep neural network (DNN) model. The convolutional neural networks VGG, MobileNet and ResNet were implemented to detect subtle differences between green strawberries and various background elements. Downscaling factors, intersection over union (IOU) thresholds and non-maxima suppression (NMS) values can be tweaked to increase recall and reduce false positives while data augmentation and negative hardminging can be used to increase the amount of input data. The state of the art model is sufficient in locating the green strawberries with an overall model accuracy of 74%. The R-CNN model can then be used for crop yield prediction to forecast the actual red strawberry count one week in advance with a 90% accuracy

    Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

    Get PDF
    The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and improving the sustainability of the agricultural sector. In addition to discussing recent advances, this study also highlights the challenges faced in adopting new technology in agriculture and proposes novel techniques to enhance the performance of deep learning models. The study provides valuable insights into the latest advances and challenges in process systems engineering and technology for agricultural activities

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Fruit Detection and Pose Estimation for Grape Cluster–Harvesting Robot Using Binocular Imagery Based on Deep Neural Networks

    Get PDF
    Reliable and robust fruit-detection algorithms in nonstructural environments are essential for the efficient use of harvesting robots. The pose of fruits is crucial to guide robots to approach target fruits for collision-free picking. To achieve accurate picking, this study investigates an approach to detect fruit and estimate its pose. First, the state-of-the-art mask region convolutional neural network (Mask R-CNN) is deployed to segment binocular images to output the mask image of the target fruit. Next, a grape point cloud extracted from the images was filtered and denoised to obtain an accurate grape point cloud. Finally, the accurate grape point cloud was used with the RANSAC algorithm for grape cylinder model fitting, and the axis of the cylinder model was used to estimate the pose of the grape. A dataset was acquired in a vineyard to evaluate the performance of the proposed approach in a nonstructural environment. The fruit detection results of 210 test images show that the average precision, recall, and intersection over union (IOU) are 89.53, 95.33, and 82.00%, respectively. The detection and point cloud segmentation for each grape took approximately 1.7 s. The demonstrated performance of the developed method indicates that it can be applied to grape-harvesting robots

    Fruit Localization and Environment Perception for Strawberry Harvesting Robots

    Get PDF
    This work presents a machine vision system for the localization of strawberries and environment perception in a strawberry-harvesting robot for use in table-top strawberry production. A deep convolutional neural network for segmentation is utilized to detect the strawberries. Segmented strawberries are localized through coordinate transformation, density base point clustering and the proposed location approximation method. To avoid collisions between the gripper and fixed obstacles, the safe manipulation region is limited to the space in front of the table and underneath the strap. Therefore, a safe region classification algorithm, based on Hough Transform algorithm, is proposed to segment the strap masks into a belt region in order to identify the pickable strawberries located underneath the strap. Similarly, a safe region classification algorithm is proposed for the table, to calculate its points in 3D and fit the points onto a 3D plane based on the 3D point cloud, so that pickable strawberries in front of the table can be identified. Experimental tests showed that the algorithm could accurately classify ripe and unripe strawberries and could identify whether the strawberries are within the safe region for harvesting. Furthermore, harvester robot’s optimized localization method could accurately locate the strawberry targets with a picking accuracy rate of 74.1% in modified situations

    Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review

    Get PDF
    Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks

    Application of Artificial Intelligence algorithms to support decision-making in agriculture activities

    Get PDF
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important in which the application of artificial intelligence algorithms, and particularly, of deep learning needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models for decision-making can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other sectors. Recent scientific developments in the field of deep learning, applied to agriculture, are reviewed and some challenges and potential solutions using deep learning algorithms in agriculture are discussed. Higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested. The ability of artificial neural networks, specifically Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM), to model daily reference evapotranspiration and soil water content is investigated. The application of these techniques to predict these parameters was tested for three sites in Portugal. A single-layer BLSTM with 512 nodes was selected. Bayesian optimization was used to determine the hyperparameters, such as learning rate, decay, batch size, and dropout size. The model achieved mean square error (MSE) values ranging from 0.07 to 0.27 (mm d–1)² for ETo (Reference Evapotranspiration) and 0.014 to 0.056 (m³m–3)² for SWC (Soil Water Content), with R2 values ranging from 0.96 to 0.98. A Convolutional Neural Network (CNN) model was added to the LSTM to investigate potential performance improvement. Performance dropped in all datasets due to the complexity of the model. The performance of the models was also compared with CNN, traditional machine learning algorithms Support Vector Regression, and Random Forest. LSTM achieved the best performance. Finally, the impact of the loss function on the performance of the proposed models was investigated. The model with the mean square error (MSE) as loss function performed better than the model with other loss functions. Afterwards, the capabilities of these models and their extension, BLSTM and Bidirectional Gated Recurrent Units (BGRU) to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate endof- season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The BLSTM network outperformed the GRU, the LSTM, and the BGRU networks on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039 kg/ha. The performance of the BLSTM in the test was compared with the most commonly used deep learning method called CNN, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest regression. The BLSTM out-performed the other models with a R2-score between 0.97 and 0.99. The results show that analyzing agricultural data with the LSTM model improves the performance of the model in terms of accuracy. The CNN model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season. Additionally, a Deep Q-Network was trained for irrigation scheduling. The agent was trained to schedule irrigation for a tomato field in Portugal. Two LSTM models trained previously were used as the agent environment. One predicts the total water in the soil profile on the next day. The other one was employed to estimate the yield based on the environmental condition during a season and then measure the net return. The agent uses this information to decide the following irrigation amount. LSTM and CNN networks were used to estimate the Q-table during training. Unlike the LSTM model, the ANN and the CNN could not estimate the Qtable, and the agent’s reward decreased during training. The comparison of the performance of the model was done with fixed-base irrigation and threshold-based irrigation. The trained model increased productivity by 11% and decreased water consumption by 20% to 30% compared to the fixed method. Also, an on-policy model, Advantage Actor–Critic (A2C), was implemented to compare irrigation scheduling with Deep Q-Network for the same tomato crop. The results show that the on-policy model A2C reduced water consumption by 20% compared to Deep Q-Network with a slight change in the net reward. These models can be developed to be applied to other cultures with high importance in Portugal, such as fruit, cereals, and grapevines, which also have large water requirements. The models developed along this thesis can be re-evaluated and trained with historical data from other cultures with high production in Portugal, such as fruits, cereals, and grapes, which also have high water demand, to create a decision support and recommendation system that tells farmers when and how much to irrigate. This system helps farmers avoid wasting water without reducing productivity. This thesis aims to contribute to the future steps in the development of precision agriculture and agricultural robotics. The models developed in this thesis are relevant to support decision-making in agricultural activities, aimed at optimizing resources, reducing time and costs, and maximizing production.Nos últimos anos, a técnica de aprendizagem profunda (Deep Learning) foi aplicada com sucesso ao reconhecimento de imagem, reconhecimento de fala e processamento de linguagem natural. Assim, tem havido um incen tivo para aplicá-la também em outros sectores. O sector agrícola é um dos mais importantes, em que a aplicação de algoritmos de inteligência artificial e, em particular, de deep learning, precisa ser explorada, pois tem impacto direto no bem-estar humano. Em particular, há uma necessidade de explorar como os modelos de aprendizagem profunda para a tomada de decisão podem ser usados como uma ferramenta para cultivo ou plantação ideal, uso da terra, melhoria da produtividade, controlo de produção, de doenças, de pragas e outras atividades. A grande quantidade de dados recebidos de sensores em explorações agrícolas inteligentes (smart farms) possibilita o uso de deep learning como modelo para tomada de decisão nesse campo. Na agricultura, não há dois ambientes iguais, o que torna o teste, a validação e a implementação bem-sucedida dessas tecnologias muito mais complexas do que na maioria dos outros setores. Desenvolvimentos científicos recentes no campo da aprendizagem profunda aplicada à agricultura, são revistos e alguns desafios e potenciais soluções usando algoritmos de aprendizagem profunda na agricultura são discutidos. Maior desempenho em termos de precisão e menor tempo de inferência pode ser alcançado, e os modelos podem ser úteis em aplicações do mundo real. Por fim, são sugeridas algumas oportunidades para futuras pesquisas nesta área. A capacidade de redes neuronais artificiais, especificamente Long Short-Term Memory (LSTM) e LSTM Bidirecional (BLSTM), para modelar a evapotranspiração de referência diária e o conteúdo de água do solo é investigada. A aplicação destas técnicas para prever estes parâmetros foi testada em três locais em Portugal. Um BLSTM de camada única com 512 nós foi selecionado. A otimização bayesiana foi usada para determinar os hiperparâmetros, como taxa de aprendizagem, decaimento, tamanho do lote e tamanho do ”dropout”. O modelo alcançou os valores de erro quadrático médio na faixa de 0,014 a 0,056 e R2 variando de 0,96 a 0,98. Um modelo de Rede Neural Convolucional (CNN – Convolutional Neural Network) foi adicionado ao LSTM para investigar uma potencial melhoria de desempenho. O desempenho decresceu em todos os conjuntos de dados devido à complexidade do modelo. O desempenho dos modelos também foi comparado com CNN, algoritmos tradicionais de aprendizagem máquina Support Vector Regression e Random Forest. O LSTM obteve o melhor desempenho. Por fim, investigou-se o impacto da função de perda no desempenho dos modelos propostos. O modelo com o erro quadrático médio (MSE) como função de perda teve um desempenho melhor do que o modelo com outras funções de perda. Em seguida, são investigadas as capacidades desses modelos e sua extensão, BLSTM e Bidirectional Gated Recurrent Units (BGRU) para prever os rendimentos da produção no final da campanha agrícola. Os modelos usam dados históricos, incluindo dados climáticos, calendário de rega e teor de água do solo, para estimar a produtividade no final da campanha. A aplicação desta técnica foi testada para os rendimentos de tomate e batata em um local em Portugal. A rede BLSTM superou as redes GRU, LSTM e BGRU no conjunto de dados de validação. O modelo foi capaz de captar a relação não linear entre dotação de rega, dados climáticos e teor de água do solo e prever a produtividade com um MSE variando de 0,07 a 0,27 (mm d–1)² para ETo (Evapotranspiração de Referência) e de 0,014 a 0,056 (m³m–3)² para SWC (Conteúdo de Água do Solo), com valores de R2 variando de 0,96 a 0,98. O desempenho do BLSTM no teste foi comparado com o método de aprendizagem profunda CNN, e métodos de aprendizagem máquina, incluindo um modelo Multi-Layer Perceptrons e regressão Random Forest. O BLSTM superou os outros modelos com um R2 entre 97% e 99%. Os resultados mostram que a análise de dados agrícolas com o modelo LSTM melhora o desempenho do modelo em termos de precisão. O modelo CNN obteve o segundo melhor desempenho. Portanto, o modelo de aprendizagem profunda tem uma capacidade notável de prever a produtividade no final da campanha. Além disso, uma Deep Q-Network foi treinada para programação de irrigação para a cultura do tomate. O agente foi treinado para programar a irrigação de uma plantação de tomate em Portugal. Dois modelos LSTM treinados anteriormente foram usados como ambiente de agente. Um prevê a água total no perfil do solo no dia seguinte. O outro foi empregue para estimar a produtividade com base nas condições ambientais durante uma o ciclo biológico e então medir o retorno líquido. O agente usa essas informações para decidir a quantidade de irrigação. As redes LSTM e CNN foram usadas para estimar a Q-table durante o treino. Ao contrário do modelo LSTM, a RNA e a CNN não conseguiram estimar a tabela Q, e a recompensa do agente diminuiu durante o treino. A comparação de desempenho do modelo foi realizada entre a irrigação com base fixa e a irrigação com base em um limiar. A aplicação das doses de rega preconizadas pelo modelo aumentou a produtividade em 11% e diminuiu o consumo de água em 20% a 30% em relação ao método fixo. Além disso, um modelo dentro da táctica, Advantage Actor–Critic (A2C), é foi implementado para comparar a programação de irrigação com o Deep Q-Network para a mesma cultura de tomate. Os resultados mostram que o modelo de táctica A2C reduziu o consumo de água consumo em 20% comparado ao Deep Q-Network com uma pequena mudança na recompensa líquida. Estes modelos podem ser desenvolvidos para serem aplicados a outras culturas com elevada produção em Portugal, como a fruta, cereais e vinha, que também têm grandes necessidades hídricas. Os modelos desenvolvidos ao longo desta tese podem ser reavaliados e treinados com dados históricos de outras culturas com elevada importância em Portugal, tais como frutas, cereais e uvas, que também têm elevados consumos de água. Assim, poderão ser desenvolvidos sistemas de apoio à decisão e de recomendação aos agricultores de quando e quanto irrigar. Estes sistemas poderão ajudar os agricultores a evitar o desperdício de água sem reduzir a produtividade. Esta tese visa contribuir para os passos futuros na evolução da agricultura de precisão e da robótica agrícola. Os modelos desenvolvidos ao longo desta tese são relevantes para apoiar a tomada de decisões em atividades agrícolas, direcionadas à otimização de recursos, redução de tempo e custos, e maximização da produção.Centro-01-0145-FEDER000017-EMaDeS-Energy, Materials, and Sustainable Development, co-funded by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the EU through the European Regional Development Fund (ERDF). Fundação para a Ciência e a Tecnologia (FCT—MCTES) also provided financial support via project UIDB/00151/2020 (C-MAST). It was also supported by the R&D Project BioDAgro – Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST - Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal

    Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI

    Get PDF
    In recent years, edge computing has become an essential technology for real-time application development by moving processing and storage capabilities close to end devices, thereby reducing latency, improving response time and ensuring secure data exchange. In this work, we focus on a Smart Agriculture application that aims to protect crops from ungulate attacks, and therefore to significantly reduce production losses, through the creation of virtual fences that take advantage of computer vision and ultrasound emission. Starting with an innovative device capable of generating ultrasound to drive away ungulates and thus protect crops from their attack, this work provides a comprehensive description of the design, development and assessment of an intelligent animal repulsion system that allows to detect and recognize the ungulates as well as generate ultrasonic signals tailored to each species of the ungulate. Taking into account the constraints coming from the rural environment in terms of energy supply and network connectivity, the proposed system is based on IoT platforms that provide a satisfactory compromise between performance, cost and energy consumption. More specifically, in this work, we deployed and evaluated various edge computing devices (Raspberry Pi, with or without a neural compute stick, and NVIDIA Jetson Nano) running real-time object detector (YOLO and Tiny-YOLO) with custom-trained models to identify the most suitable animal recognition HW/SW platform to be integrated with the ultrasound generator. Experimental results show the feasibility of the intelligent animal repelling system through the deployment of the animal detectors on power efficient edge computing devices without compromising the mean average precision and also satisfying real-time requirements. In addition, for each HW/SW platform, the experimental study provides a cost/performance analysis, as well as measurements of the average and peak CPU temperature. Best practices are also discussed and lastly, this article discusses how the combined technology used can help farmers and agronomists in their decision making and management process

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others
    corecore