478 research outputs found

    Design and Estimation of an AUV Portable Intelligent Rescue System Based on Attitude Recognition Algorithm

    Get PDF
    This research is based on the attitude sensing algorithm to design a portable intelligent rescue system for autonomous underwater vehicles (AUVs). To lower the possibility of losing the underwater vehicle and reduce the difficulty of rescuing, when an AUV intelligent rescue system (AIRS) detects the fault of AUVs and they could not be reclaimed, AIRS can pump carbon dioxide into the airbag immediately to make the vehicle resurface. AIRS consists of attitude sensing module, double-trigger inflator mechanism, and activity recognition algorithm. The sensing module is an eleven-DOF sensor that is made up of a six-axis inertial sensor, a three-axis magnetometer, a barometer, and a thermometer. Furthermore, the signal calibration and extended Kalman filter (SC-EKF) is proposed to be used subsequently to calibrate and fuse the data from the sensing module. Then, the attitude data are classified with the principle of feature extraction (FE) and backpropagation network (BPN) classifier. Finally, the designed double-trigger inflator can be triggered not only by electricity but also by water damage when the waterproof cabin is severely broken. With the AIRS technology, the safety of detecting and investigating the use AUVs can be increased since there is no need to send divers to engage in the rescue mission under water

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Multi-sensor data fusion in mobile devices for the identification of Activities of Daily Living

    Get PDF
    Following the recent advances in technology and the growing use of mobile devices such as smartphones, several solutions may be developed to improve the quality of life of users in the context of Ambient Assisted Living (AAL). Mobile devices have different available sensors, e.g., accelerometer, gyroscope, magnetometer, microphone and Global Positioning System (GPS) receiver, which allow the acquisition of physical and physiological parameters for the recognition of different Activities of Daily Living (ADL) and the environments in which they are performed. The definition of ADL includes a well-known set of tasks, which include basic selfcare tasks, based on the types of skills that people usually learn in early childhood, including feeding, bathing, dressing, grooming, walking, running, jumping, climbing stairs, sleeping, watching TV, working, listening to music, cooking, eating and others. On the context of AAL, some individuals (henceforth called user or users) need particular assistance, either because the user has some sort of impairment, or because the user is old, or simply because users need/want to monitor their lifestyle. The research and development of systems that provide a particular assistance to people is increasing in many areas of application. In particular, in the future, the recognition of ADL will be an important element for the development of a personal digital life coach, providing assistance to different types of users. To support the recognition of ADL, the surrounding environments should be also recognized to increase the reliability of these systems. The main focus of this Thesis is the research on methods for the fusion and classification of the data acquired by the sensors available in off-the-shelf mobile devices in order to recognize ADL in almost real-time, taking into account the large diversity of the capabilities and characteristics of the mobile devices available in the market. In order to achieve this objective, this Thesis started with the review of the existing methods and technologies to define the architecture and modules of the method for the identification of ADL. With this review and based on the knowledge acquired about the sensors available in off-the-shelf mobile devices, a set of tasks that may be reliably identified was defined as a basis for the remaining research and development to be carried out in this Thesis. This review also identified the main stages for the development of a new method for the identification of the ADL using the sensors available in off-the-shelf mobile devices; these stages are data acquisition, data processing, data cleaning, data imputation, feature extraction, data fusion and artificial intelligence. One of the challenges is related to the different types of data acquired from the different sensors, but other challenges were found, including the presence of environmental noise, the positioning of the mobile device during the daily activities, the limited capabilities of the mobile devices and others. Based on the acquired data, the processing was performed, implementing data cleaning and feature extraction methods, in order to define a new framework for the recognition of ADL. The data imputation methods were not applied, because at this stage of the research their implementation does not have influence in the results of the identification of the ADL and environments, as the features are extracted from a set of data acquired during a defined time interval and there are no missing values during this stage. The joint selection of the set of usable sensors and the identifiable set of tasks will then allow the development of a framework that, considering multi-sensor data fusion technologies and context awareness, in coordination with other information available from the user context, such as his/her agenda and the time of the day, will allow to establish a profile of the tasks that the user performs in a regular activity day. The classification method and the algorithm for the fusion of the features for the recognition of ADL and its environments needs to be deployed in a machine with some computational power, while the mobile device that will use the created framework, can perform the identification of the ADL using a much less computational power. Based on the results reported in the literature, the method chosen for the recognition of the ADL is composed by three variants of Artificial Neural Networks (ANN), including simple Multilayer Perceptron (MLP) networks, Feedforward Neural Networks (FNN) with Backpropagation, and Deep Neural Networks (DNN). Data acquisition can be performed with standard methods. After the acquisition, the data must be processed at the data processing stage, which includes data cleaning and feature extraction methods. The data cleaning method used for motion and magnetic sensors is the low pass filter, in order to reduce the noise acquired; but for the acoustic data, the Fast Fourier Transform (FFT) was applied to extract the different frequencies. When the data is clean, several features are then extracted based on the types of sensors used, including the mean, standard deviation, variance, maximum value, minimum value and median of raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance and median of the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the five greatest distances between the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance, median and 26 Mel- Frequency Cepstral Coefficients (MFCC) of the frequencies obtained with FFT based on the raw data acquired from the microphone data; and the distance travelled calculated with the data acquired from the GPS receiver. After the extraction of the features, these will be grouped in different datasets for the application of the ANN methods and to discover the method and dataset that reports better results. The classification stage was incrementally developed, starting with the identification of the most common ADL (i.e., walking, running, going upstairs, going downstairs and standing activities) with motion and magnetic sensors. Next, the environments were identified with acoustic data, i.e., bedroom, bar, classroom, gym, kitchen, living room, hall, street and library. After the environments are recognized, and based on the different sets of sensors commonly available in the mobile devices, the data acquired from the motion and magnetic sensors were combined with the recognized environment in order to differentiate some activities without motion, i.e., sleeping and watching TV. The number of recognized activities in this stage was increased with the use of the distance travelled, extracted from the GPS receiver data, allowing also to recognize the driving activity. After the implementation of the three classification methods with different numbers of iterations, datasets and remaining configurations in a machine with high processing capabilities, the reported results proved that the best method for the recognition of the most common ADL and activities without motion is the DNN method, but the best method for the recognition of environments is the FNN method with Backpropagation. Depending on the number of sensors used, this implementation reports a mean accuracy between 85.89% and 89.51% for the recognition of the most common ADL, equals to 86.50% for the recognition of environments, and equals to 100% for the recognition of activities without motion, reporting an overall accuracy between 85.89% and 92.00%. The last stage of this research work was the implementation of the structured framework for the mobile devices, verifying that the FNN method requires a high processing power for the recognition of environments and the results reported with the mobile application are lower than the results reported with the machine with high processing capabilities used. Thus, the DNN method was also implemented for the recognition of the environments with the mobile devices. Finally, the results reported with the mobile devices show an accuracy between 86.39% and 89.15% for the recognition of the most common ADL, equal to 45.68% for the recognition of environments, and equal to 100% for the recognition of activities without motion, reporting an overall accuracy between 58.02% and 89.15%. Compared with the literature, the results returned by the implemented framework show only a residual improvement. However, the results reported in this research work comprehend the identification of more ADL than the ones described in other studies. The improvement in the recognition of ADL based on the mean of the accuracies is equal to 2.93%, but the maximum number of ADL and environments previously recognized was 13, while the number of ADL and environments recognized with the framework resulting from this research is 16. In conclusion, the framework developed has a mean improvement of 2.93% in the accuracy of the recognition for a larger number of ADL and environments than previously reported. In the future, the achievements reported by this PhD research may be considered as a start point of the development of a personal digital life coach, but the number of ADL and environments recognized by the framework should be increased and the experiments should be performed with different types of devices (i.e., smartphones and smartwatches), and the data imputation and other machine learning methods should be explored in order to attempt to increase the reliability of the framework for the recognition of ADL and its environments.Após os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis, como por exemplo os smartphones, várias soluções podem ser desenvolvidas para melhorar a qualidade de vida dos utilizadores no contexto de Ambientes de Vida Assistida (AVA) ou Ambient Assisted Living (AAL). Os dispositivos móveis integram vários sensores, tais como acelerómetro, giroscópio, magnetómetro, microfone e recetor de Sistema de Posicionamento Global (GPS), que permitem a aquisição de vários parâmetros físicos e fisiológicos para o reconhecimento de diferentes Atividades da Vida Diária (AVD) e os seus ambientes. A definição de AVD inclui um conjunto bem conhecido de tarefas que são tarefas básicas de autocuidado, baseadas nos tipos de habilidades que as pessoas geralmente aprendem na infância. Essas tarefas incluem alimentar-se, tomar banho, vestir-se, fazer os cuidados pessoais, caminhar, correr, pular, subir escadas, dormir, ver televisão, trabalhar, ouvir música, cozinhar, comer, entre outras. No contexto de AVA, alguns indivíduos (comumente chamados de utilizadores) precisam de assistência particular, seja porque o utilizador tem algum tipo de deficiência, seja porque é idoso, ou simplesmente porque o utilizador precisa/quer monitorizar e treinar o seu estilo de vida. A investigação e desenvolvimento de sistemas que fornecem algum tipo de assistência particular está em crescente em muitas áreas de aplicação. Em particular, no futuro, o reconhecimento das AVD é uma parte importante para o desenvolvimento de um assistente pessoal digital, fornecendo uma assistência pessoal de baixo custo aos diferentes tipos de pessoas. pessoas. Para ajudar no reconhecimento das AVD, os ambientes em que estas se desenrolam devem ser reconhecidos para aumentar a fiabilidade destes sistemas. O foco principal desta Tese é o desenvolvimento de métodos para a fusão e classificação dos dados adquiridos a partir dos sensores disponíveis nos dispositivos móveis, para o reconhecimento quase em tempo real das AVD, tendo em consideração a grande diversidade das características dos dispositivos móveis disponíveis no mercado. Para atingir este objetivo, esta Tese iniciou-se com a revisão dos métodos e tecnologias existentes para definir a arquitetura e os módulos do novo método de identificação das AVD. Com esta revisão da literatura e com base no conhecimento adquirido sobre os sensores disponíveis nos dispositivos móveis disponíveis no mercado, um conjunto de tarefas que podem ser identificadas foi definido para as pesquisas e desenvolvimentos desta Tese. Esta revisão também identifica os principais conceitos para o desenvolvimento do novo método de identificação das AVD, utilizando os sensores, são eles: aquisição de dados, processamento de dados, correção de dados, imputação de dados, extração de características, fusão de dados e extração de resultados recorrendo a métodos de inteligência artificial. Um dos desafios está relacionado aos diferentes tipos de dados adquiridos pelos diferentes sensores, mas outros desafios foram encontrados, sendo os mais relevantes o ruído ambiental, o posicionamento do dispositivo durante a realização das atividades diárias, as capacidades limitadas dos dispositivos móveis. As diferentes características das pessoas podem igualmente influenciar a criação dos métodos, escolhendo pessoas com diferentes estilos de vida e características físicas para a aquisição e identificação dos dados adquiridos a partir de sensores. Com base nos dados adquiridos, realizou-se o processamento dos dados, implementando-se métodos de correção dos dados e a extração de características, para iniciar a criação do novo método para o reconhecimento das AVD. Os métodos de imputação de dados foram excluídos da implementação, pois não iriam influenciar os resultados da identificação das AVD e dos ambientes, na medida em que são utilizadas as características extraídas de um conjunto de dados adquiridos durante um intervalo de tempo definido. A seleção dos sensores utilizáveis, bem como das AVD identificáveis, permitirá o desenvolvimento de um método que, considerando o uso de tecnologias para a fusão de dados adquiridos com múltiplos sensores em coordenação com outras informações relativas ao contexto do utilizador, tais como a agenda do utilizador, permitindo estabelecer um perfil de tarefas que o utilizador realiza diariamente. Com base nos resultados obtidos na literatura, o método escolhido para o reconhecimento das AVD são as diferentes variantes das Redes Neuronais Artificiais (RNA), incluindo Multilayer Perceptron (MLP), Feedforward Neural Networks (FNN) with Backpropagation and Deep Neural Networks (DNN). No final, após a criação dos métodos para cada fase do método para o reconhecimento das AVD e ambientes, a implementação sequencial dos diferentes métodos foi realizada num dispositivo móvel para testes adicionais. Após a definição da estrutura do método para o reconhecimento de AVD e ambientes usando dispositivos móveis, verificou-se que a aquisição de dados pode ser realizada com os métodos comuns. Após a aquisição de dados, os mesmos devem ser processados no módulo de processamento de dados, que inclui os métodos de correção de dados e de extração de características. O método de correção de dados utilizado para sensores de movimento e magnéticos é o filtro passa-baixo de modo a reduzir o ruído, mas para os dados acústicos, a Transformada Rápida de Fourier (FFT) foi aplicada para extrair as diferentes frequências. Após a correção dos dados, as diferentes características foram extraídas com base nos tipos de sensores usados, sendo a média, desvio padrão, variância, valor máximo, valor mínimo e mediana de dados adquiridos pelos sensores magnéticos e de movimento, a média, desvio padrão, variância e mediana dos picos máximos calculados com base nos dados adquiridos pelos sensores magnéticos e de movimento, as cinco maiores distâncias entre os picos máximos calculados com os dados adquiridos dos sensores de movimento e magnéticos, a média, desvio padrão, variância e 26 Mel-Frequency Cepstral Coefficients (MFCC) das frequências obtidas com FFT com base nos dados obtidos a partir do microfone, e a distância calculada com os dados adquiridos pelo recetor de GPS. Após a extração das características, as mesmas são agrupadas em diferentes conjuntos de dados para a aplicação dos métodos de RNA de modo a descobrir o método e o conjunto de características que reporta melhores resultados. O módulo de classificação de dados foi incrementalmente desenvolvido, começando com a identificação das AVD comuns com sensores magnéticos e de movimento, i.e., andar, correr, subir escadas, descer escadas e parado. Em seguida, os ambientes são identificados com dados de sensores acústicos, i.e., quarto, bar, sala de aula, ginásio, cozinha, sala de estar, hall, rua e biblioteca. Com base nos ambientes reconhecidos e os restantes sensores disponíveis nos dispositivos móveis, os dados adquiridos dos sensores magnéticos e de movimento foram combinados com o ambiente reconhecido para diferenciar algumas atividades sem movimento (i.e., dormir e ver televisão), onde o número de atividades reconhecidas nesta fase aumenta com a fusão da distância percorrida, extraída a partir dos dados do recetor GPS, permitindo também reconhecer a atividade de conduzir. Após a implementação dos três métodos de classificação com diferentes números de iterações, conjuntos de dados e configurações numa máquina com alta capacidade de processamento, os resultados relatados provaram que o melhor método para o reconhecimento das atividades comuns de AVD e atividades sem movimento é o método DNN, mas o melhor método para o reconhecimento de ambientes é o método FNN with Backpropagation. Dependendo do número de sensores utilizados, esta implementação reporta uma exatidão média entre 85,89% e 89,51% para o reconhecimento das AVD comuns, igual a 86,50% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão global entre 85,89% e 92,00%. A última etapa desta Tese foi a implementação do método nos dispositivos móveis, verificando que o método FNN requer um alto poder de processamento para o reconhecimento de ambientes e os resultados reportados com estes dispositivos são inferiores aos resultados reportados com a máquina com alta capacidade de processamento utilizada no desenvolvimento do método. Assim, o método DNN foi igualmente implementado para o reconhecimento dos ambientes com os dispositivos móveis. Finalmente, os resultados relatados com os dispositivos móveis reportam uma exatidão entre 86,39% e 89,15% para o reconhecimento das AVD comuns, igual a 45,68% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão geral entre 58,02% e 89,15%. Com base nos resultados relatados na literatura, os resultados do método desenvolvido mostram uma melhoria residual, mas os resultados desta Tese identificam mais AVD que os demais estudos disponíveis na literatura. A melhoria no reconhecimento das AVD com base na média das exatidões é igual a 2,93%, mas o número máximo de AVD e ambientes reconhecidos pelos estudos disponíveis na literatura é 13, enquanto o número de AVD e ambientes reconhecidos com o método implementado é 16. Assim, o método desenvolvido tem uma melhoria de 2,93% na exatidão do reconhecimento num maior número de AVD e ambientes. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um assistente digital pessoal, mas o número de ADL e ambientes reconhecidos pelo método deve ser aumentado e as experiências devem ser repetidas com diferentes tipos de dispositivos móveis (i.e., smartphones e smartwatches), e os métodos de imputação e outros métodos de classificação de dados devem ser explorados de modo a tentar aumentar a confiabilidade do método para o reconhecimento das AVD e ambientes

    COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM

    Get PDF
    Compression plays a significant role in Body Sensor Networks (BSN) data since the sensors in BSNs have limited battery power and memory. Also, data needs to be transmitted fast and in a lossless manner to provide near real-time feedback. The paper evaluates lossless data compression algorithms like Run Length Encoding (RLE), Lempel Zev Welch (LZW) and Huffman on data from wearable devices and compares them in terms of Compression Ratio, Compression Factor, Savings Percentage and Compression Time. It also evaluates a data deduplication technique used for Low Bandwidth File Systems (LBFS) named Two Thresholds Two Divisors (TTTD) algorithm to determine if it could be used for BSN data. By changing the parameters and running the algorithm multiple times on the data, it arrives at a set of values that give \u3e50 compression ratio on BSN data. This is the first value of the paper. Based on these performance evaluation results of TTTD and various classical compression algorithms, it proposes a technique to combine multiple algorithms in sequence. Upon comparison of the performance, it has been found that the new algorithm, TTTD-H, which does TTTD and Huffman in sequence, improves the Savings Percentage by 23 percent over TTTD, and 31 percent over Huffman when executed independently. Compression Factor improved by 142 percent over TTTD, 52 percent over LZW, 178 percent over Huffman for a file of 3.5 MB. These significant results are the second important value of the project

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Fused mechanomyography and inertial measurement for human-robot interface

    Get PDF
    Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control through uniting a human operator as the supervisor with a machine as the task executor. Sensors, actuators, and onboard intelligence have not reached the point where robotic manipulators may function with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. These may include environments where direct human action is undesirable or infeasible, and situations where a robot must assist and/or interface with people. Contemporary literature has introduced concepts such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize hand gestures and/or track arm motions for assessment of operator intent and generation of robotic control signals. While these developments offer a wealth of future potential their utility has been largely restricted to laboratory demonstrations in controlled environments due to issues such as lack of portability and robustness and an inability to extract operator intent for both arm and hand motion. Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-based gesture recognition systems in particular have received significant attention in recent literature. As wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp intent as HMI input for manipulator control. However, such work has arguably reached a plateau since EMG suffers from interference from environmental factors which cause signal degradation over time, demands an electrical connection with the skin, and has not demonstrated the capacity to function out of controlled environments for long periods of time. This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm movements into control signals. Additionally, bands containing six mechanomyography sensors were used to observe muscular contractions in the forearm which are generated using specific hand motions. This combination of continuous and discrete control signals allows a large variety of smart devices to be controlled. Several methods of pattern recognition were implemented to provide accurate decoding of the mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis also established that arm pose also changes the measured signal. This thesis introduces a new method of fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are proposed. These improvements to the robustness of the system provide the first solution that is able to reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical environment. Application in robot teleoperation in both real-world and virtual environments were explored. With multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it requires a combination of continuous and discrete control signals. The field of prosthetics also represents a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic devices, however mechanomyography sensors are unaffected by such issues. There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems become more prevalent, and as the desire for a simple, universal interface increases. Such systems have the potential to impact significantly on the quality of life of prosthetic users and others.Open Acces

    PRE-IMPACT FALL DETECTION USING VERTICAL ANGLE AND ACCELERATION TRIANGLE FEATURE

    Get PDF
    In this study, pre-impact fall detection algorithms were developed using an IMU sensor at the waist. Forty male volunteers participated in the experiments (four types of falls and six types of ADLs). An IMU was used to measure acceleration, angular velocity and vertical angle during all activities. Thresholds of acceleration, angular velocity, and vertical angle were set to 0.9 g, 47.3°/s, and 24.7° respectively for algorithm using vertical angle. Thresholds of acceleration, angular velocity, and triangle feature were set to 0.9 g, 47.3°/s, and 0.19 respectively for pre-impact fall detection algorithm using triagle feature. Pre-impact fall detection algorithms with the vertical angle and the triangle feature resulted in the lead time of 402 ms and 427 ms respectively. Both algorithms showed 100% accuracy to detect falls
    • …
    corecore